开源向量数据库和搜索初创公司Qdrant开发了一款轻量级向量数据库,专为在机器人、自助终端、移动设备和其他嵌入式系统上本地运行而设计。
Qdrant Edge使开发者能够在边缘设备上本地运行混合和多模态搜索,无需连接服务器进程或后台线程。边缘设备通常资源受限,具有高延迟、有限计算能力和最小网络访问。Qdrant在其Edge产品中实现了云原生向量数据库的核心功能。向量数据库被生成式AI模型用于响应基于自然语言的用户请求。
Qdrant首席执行官兼联合创始人André Zayarni表示:"开发者需要在做出许多决策的地方运行基础设施——在设备本身上。Qdrant Edge是专为嵌入式AI设计的全新向量搜索引擎。它将本地搜索、确定性性能和多模态支持融入到最小的运行时占用空间中。"
Qdrant表示,Edge产品提供了对生命周期、内存使用和进程内执行的完全控制,无需后台服务。它将支持进程内执行、高级过滤以及与实时智能体工作负载的兼容性。预想的应用包括具有多模态传感器输入的机器人导航、智能零售自助终端和销售点系统上的本地检索,以及在移动或嵌入式硬件上运行的隐私优先助手。
Qdrant最初将其向量存储在底层的RocksDB键值存储中,但由于固有的压缩导致随机延迟峰值,并发现由于选项过多而难以调优。因此,它用Rust开发了自己的Gridstore键值存储。这具有数据层来在固定大小块中存储值以进行快速查找,掩码层来跟踪已使用和未使用的块而无需压缩,以及间隙层来管理空间分配。
Qdrant表示,它已经看到了机器人和移动AI开发者的早期关注,这些开发者希望进行本地部署并获得比连接到中央或云向量数据库更好的性能,以及需要边缘隐私优先AI的公司。
我们了解到,从自助终端开发者的角度来看,拥有能够响应客户自然语言查询的系统可能是有利的。
Qdrant的Edge产品现在通过私有测试版提供。构建机器人、设备助手或嵌入式推理管道的团队可以在此申请。
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。