Qdrant推出轻量级边缘设备向量数据库

开源向量数据库公司Qdrant开发了一款轻量级向量数据库,专为机器人、自助终端、移动设备和其他嵌入式系统本地运行而设计。Qdrant Edge支持开发者在边缘设备上本地运行混合和多模态搜索,无需连接服务器进程。该产品提供生命周期完全控制、内存使用优化和进程内执行功能,支持高级过滤和实时代理工作负载兼容性。应用场景包括机器人导航、智能零售终端和隐私优先的移动助手等。

开源向量数据库和搜索初创公司Qdrant开发了一款轻量级向量数据库,专为在机器人、自助终端、移动设备和其他嵌入式系统上本地运行而设计。

Qdrant Edge使开发者能够在边缘设备上本地运行混合和多模态搜索,无需连接服务器进程或后台线程。边缘设备通常资源受限,具有高延迟、有限计算能力和最小网络访问。Qdrant在其Edge产品中实现了云原生向量数据库的核心功能。向量数据库被生成式AI模型用于响应基于自然语言的用户请求。

Qdrant首席执行官兼联合创始人André Zayarni表示:"开发者需要在做出许多决策的地方运行基础设施——在设备本身上。Qdrant Edge是专为嵌入式AI设计的全新向量搜索引擎。它将本地搜索、确定性性能和多模态支持融入到最小的运行时占用空间中。"

Qdrant表示,Edge产品提供了对生命周期、内存使用和进程内执行的完全控制,无需后台服务。它将支持进程内执行、高级过滤以及与实时智能体工作负载的兼容性。预想的应用包括具有多模态传感器输入的机器人导航、智能零售自助终端和销售点系统上的本地检索,以及在移动或嵌入式硬件上运行的隐私优先助手。

Qdrant最初将其向量存储在底层的RocksDB键值存储中,但由于固有的压缩导致随机延迟峰值,并发现由于选项过多而难以调优。因此,它用Rust开发了自己的Gridstore键值存储。这具有数据层来在固定大小块中存储值以进行快速查找,掩码层来跟踪已使用和未使用的块而无需压缩,以及间隙层来管理空间分配。

Qdrant表示,它已经看到了机器人和移动AI开发者的早期关注,这些开发者希望进行本地部署并获得比连接到中央或云向量数据库更好的性能,以及需要边缘隐私优先AI的公司。

我们了解到,从自助终端开发者的角度来看,拥有能够响应客户自然语言查询的系统可能是有利的。

Qdrant的Edge产品现在通过私有测试版提供。构建机器人、设备助手或嵌入式推理管道的团队可以在此申请。

来源:BLOCKS & FILES

0赞

好文章,需要你的鼓励

2025

07/30

09:11

分享

点赞

邮件订阅