随着各组织竞相挖掘人工智能的潜力,许多企业发现其现有数据架构难以跟上发展步伐。传统的数据仓库和数据湖往往缺乏支持AI驱动分析所需的灵活性和速度。挑战在于统一多样化的数据源,确保可访问性,并在不增加复杂性或造成瓶颈的情况下实现高级功能。
在The Register的最新问答中,主持人Tim Phillips与谷歌的Geeta Banda探讨了如何将BigQuery重新构想为统一的数据和AI平台。对话深入探讨了设计面向AI时代数据架构所需的要素——这种架构能够整合结构化和非结构化数据,与AI智能体无缝连接,并更快地向企业中更多人员提供洞察。
Geeta阐述了BigQuery的发展历程和演进,从最初作为数据仓库到成为能够以创新方式摄取、转换和分析数据的平台。她概述了BigQuery的智能体AI方法如何超越嵌入机器学习模型,实现自动化、情境感知的洞察生成,从而提升分析的速度、质量和可访问性。
会议还解决了实际关注点:这些功能是否对分析师和业务用户开放,如何避免供应商锁定,以及在临时查询环境中有哪些保障措施帮助控制成本。真实案例展示了各组织如何已经在使用BigQuery推动业务成果,讨论最后展望了进一步增强功能的路线图。
如果您想了解如何为AI现代化数据架构,与现有工具集成,并赋能团队无摩擦地生成洞察,这个视频将提供宝贵的指导。
Q&A
Q1:BigQuery如何从传统数据仓库演进为AI平台?
A:BigQuery从最初的数据仓库演进为能够以创新方式摄取、转换和分析数据的统一平台。它不仅能整合结构化和非结构化数据,还能与AI智能体无缝连接,实现自动化、情境感知的洞察生成。
Q2:BigQuery的智能体AI方法有什么特别之处?
A:BigQuery的智能体AI方法超越了简单的机器学习模型嵌入,能够实现自动化、情境感知的洞察生成,从而显著提升分析的速度、质量和可访问性,为企业用户提供更智能的数据分析体验。
Q3:使用BigQuery进行AI驱动分析需要考虑哪些成本和技术问题?
A:在使用BigQuery时需要考虑如何避免供应商锁定,在临时查询环境中控制成本,以及确保分析师和业务用户能够轻松访问这些AI功能。同时还要关注与现有工具的集成能力。
好文章,需要你的鼓励
腾讯今日开源混元MT系列语言模型,专门针对翻译任务进行优化。该系列包含四个模型,其中两个旗舰模型均拥有70亿参数。腾讯使用四个不同数据集进行初始训练,并采用强化学习进行优化。在WMT25基准测试中,混元MT在31个语言对中的30个表现优于谷歌翻译,某些情况下得分高出65%,同时也超越了GPT-4.1和Claude 4 Sonnet等模型。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
今年是Frontiers Health十周年。在pharmaphorum播客的Frontiers Health限定系列中,网络编辑Nicole Raleigh采访了Startup Health总裁兼联合创始人Unity Stoakes。Stoakes在科技、科学和设计交汇领域深耕30多年,致力于变革全球健康。他认为,Frontiers Health通过精心选择的空间促进有意义的网络建设,利用网络效应推进创新力量,让企业家共同构建并带来改变,从而有益地影响全球人类福祉。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。