随着各组织竞相挖掘人工智能的潜力,许多企业发现其现有数据架构难以跟上发展步伐。传统的数据仓库和数据湖往往缺乏支持AI驱动分析所需的灵活性和速度。挑战在于统一多样化的数据源,确保可访问性,并在不增加复杂性或造成瓶颈的情况下实现高级功能。
在The Register的最新问答中,主持人Tim Phillips与谷歌的Geeta Banda探讨了如何将BigQuery重新构想为统一的数据和AI平台。对话深入探讨了设计面向AI时代数据架构所需的要素——这种架构能够整合结构化和非结构化数据,与AI智能体无缝连接,并更快地向企业中更多人员提供洞察。
Geeta阐述了BigQuery的发展历程和演进,从最初作为数据仓库到成为能够以创新方式摄取、转换和分析数据的平台。她概述了BigQuery的智能体AI方法如何超越嵌入机器学习模型,实现自动化、情境感知的洞察生成,从而提升分析的速度、质量和可访问性。
会议还解决了实际关注点:这些功能是否对分析师和业务用户开放,如何避免供应商锁定,以及在临时查询环境中有哪些保障措施帮助控制成本。真实案例展示了各组织如何已经在使用BigQuery推动业务成果,讨论最后展望了进一步增强功能的路线图。
如果您想了解如何为AI现代化数据架构,与现有工具集成,并赋能团队无摩擦地生成洞察,这个视频将提供宝贵的指导。
Q&A
Q1:BigQuery如何从传统数据仓库演进为AI平台?
A:BigQuery从最初的数据仓库演进为能够以创新方式摄取、转换和分析数据的统一平台。它不仅能整合结构化和非结构化数据,还能与AI智能体无缝连接,实现自动化、情境感知的洞察生成。
Q2:BigQuery的智能体AI方法有什么特别之处?
A:BigQuery的智能体AI方法超越了简单的机器学习模型嵌入,能够实现自动化、情境感知的洞察生成,从而显著提升分析的速度、质量和可访问性,为企业用户提供更智能的数据分析体验。
Q3:使用BigQuery进行AI驱动分析需要考虑哪些成本和技术问题?
A:在使用BigQuery时需要考虑如何避免供应商锁定,在临时查询环境中控制成本,以及确保分析师和业务用户能够轻松访问这些AI功能。同时还要关注与现有工具的集成能力。
好文章,需要你的鼓励
Queen's大学研究团队提出结构化智能体软件工程框架SASE,重新定义人机协作模式。该框架将程序员角色从代码编写者转变为AI团队指挥者,建立双向咨询机制和标准化文档系统,解决AI编程中的质量控制难题,为软件工程向智能化协作时代转型提供系统性解决方案。
苹果在iOS 26公开发布两周后推出首个修复更新iOS 26.0.1,建议所有用户安装。由于重大版本发布通常伴随漏洞,许多用户此前选择安装iOS 18.7。尽管iOS 26经过数月测试,但更大用户基数能发现更多问题。新版本与iPhone 17等新机型同期发布,测试范围此前受限。预计苹果将继续发布后续修复版本。
西北工业大学与中山大学合作开发了首个超声专用AI视觉语言模型EchoVLM,通过收集15家医院20万病例和147万超声图像,采用专家混合架构,实现了比通用AI模型准确率提升10分以上的突破。该系统能自动生成超声报告、进行诊断分析和回答专业问题,为医生提供智能辅助,推动医疗AI向专业化发展。