AI泡沫?什么AI泡沫?如果你问英伟达CEO黄仁勋,我们正处在一场"新工业革命"中。
黄仁勋的公司生产芯片和计算机硬件,是AI淘金热中的"锄头和铲子",通过抓住AI增长机遇成为了全球最大的企业。在周三的财报电话会议上,他的公司报告了上季度467亿美元的营收,并表示生成式AI行业的惊人增长没有放缓迹象。
"我认为未来几年,肯定会贯穿整个十年,我们看到了非常重大的增长机会,"黄仁勋说道。
这与OpenAI CEO山姆·奥特曼最近的评论形成对比,后者认为投资者现在对AI"过度兴奋"。(奥特曼也承认他仍然相信AI是"很长时间以来发生的最重要的事情"。)
黄仁勋表示,他的公司对运行AI的芯片和计算机需求有"非常、非常重要的预测",表明对更多数据中心的需求不会很快停止。他推测,到本十年末,AI基础设施支出可能达到3万亿到4万亿美元。(美国的国内生产总值约为30万亿美元。)
这意味着需要大量数据中心,它们占用大量土地,消耗大量水和能源。这些AI工厂近年来变得越来越大,对周围社区产生重大影响,并对美国电网造成更大压力。需要更多能源的不同生成式AI工具的增长可能会使这种需求更加巨大。
更强大且要求更高的模型
聊天机器人上的一个提示不再总是意味着只是一个提示。计算能力需求增加的一个原因是,采用"推理"技术的新AI模型在处理一个问题时使用更多电力。"这被称为长思考,思考得越久,通常产生更好的答案,"黄仁勋说。
这种技术允许AI模型在不同网站上进行研究,多次尝试问题以获得更好答案,并将不同信息整合到一个回应中。
一些AI公司将推理作为单独模型提供,或作为标记为"深度思考"之类的选择。OpenAI将其直接整合到GPT-5发布中,通过路由程序决定是由更轻量、直接的模型处理,还是由更密集的推理模型处理。
但黄仁勋表示,推理模型可能需要比传统大语言模型回应多100倍或更多的计算能力。这些模型,连同能够执行任务的智能体系统和能够处理可视化并在物理世界中操作的机器人模型,使得对芯片、能源和数据中心土地的需求持续上升。
"每一代,需求只会增长,"黄仁勋说道。
Q&A
Q1:英伟达CEO黄仁勋对AI行业未来发展有什么看法?
A:黄仁勋认为我们正处在一场"新工业革命"中,预测未来几年乃至整个十年都会有重大增长机会。他推测到本十年末,AI基础设施支出可能达到3万亿到4万亿美元,表明生成式AI行业的增长没有放缓迹象。
Q2:AI推理模型与传统大语言模型在计算需求上有什么区别?
A:AI推理模型采用"长思考"技术,能够在不同网站研究、多次尝试问题并整合信息。但这种推理模型可能需要比传统大语言模型多100倍或更多的计算能力,大大增加了对芯片和数据中心的需求。
Q3:AI数据中心快速增长会带来哪些影响?
A:AI数据中心占用大量土地,消耗大量水和能源,对周围社区产生重大影响,并对美国电网造成更大压力。随着需要更多能源的生成式AI工具增长,这种需求可能会变得更加巨大。
好文章,需要你的鼓励
在“PEC 2025 AI创新者大会暨第二届提示工程峰会”上,一场以“AIGC创作新范式——双脑智能时代:心智驱动的生产力变革”为主题的分论坛,成为现场最具张力的对话空间。
人民大学团队开发了Search-o1框架,让AI在推理时能像侦探一样边查资料边思考。系统通过检测不确定性词汇自动触发搜索,并用知识精炼模块从海量资料中提取关键信息无缝融入推理过程。在博士级科学问题测试中,该系统整体准确率达63.6%,在物理和生物领域甚至超越人类专家水平,为AI推理能力带来突破性提升。
Linux Mint团队计划加快发布周期,在未来几个月推出两个新版本。LMDE 7代号"Gigi"基于Debian 13开发,将包含libAdapta库以支持Gtk4应用的主题功能。新版本将停止提供32位版本支持。同时Cinnamon桌面的Wayland支持持续改进,在菜单、状态小程序和键盘输入处理方面表现更佳,有望成为完整支持Wayland的重要桌面环境之一。
Anthropic研究团队开发的REINFORCE++算法通过采用全局优势标准化解决了AI训练中的"过度拟合"问题。该算法摒弃了传统PPO方法中昂贵的价值网络组件,用统一评价标准替代针对单个问题的局部基准,有效避免了"奖励破解"现象。实验显示,REINFORCE++在处理新问题时表现更稳定,特别是在长文本推理和工具集成场景中展现出优异的泛化能力,为开发更实用可靠的AI系统提供了新思路。