安全公司Pangea的研究人员发现了一种新方法来绕过大语言模型的安全防护机制。他们将这种攻击方式称为"LegalPwn",通过在法律文档中隐藏恶意指令来欺骗大语言模型。
随着大语言模型越来越接近关键系统,理解和缓解其漏洞变得更加紧迫。LegalPwn攻击利用了大语言模型对法律免责声明的"合规要求",允许攻击者执行提示注入攻击。
大语言模型是当前AI热潮的核心技术,它们使用大量受版权保护的材料训练,将其转化为Token流来创建统计模型。这些模型被包装成能够推理、思考和回答问题的机器,但实际上只是统计技巧,其输出可能与事实毫无关系。
大语言模型被设计为提供"有用"的答案,但公司不希望它们的产品与提供非法内容相关联,如制作炸弹的指令等。因此,模型被设置了"护栏"来防止有害响应。
绕过这些护栏被称为"越狱",这通常很简单。研究人员已经证明,可以通过将请求框架为一个长的连续句子来实现越狱,或者通过分配"调查员"等角色来武器化大语言模型以窃取私人信息。
LegalPwn代表了一种新的攻击形式。恶意指令被隐藏在法律文档中,措辞巧妙地融入周围的法律术语中,使人类读者在浏览时不会注意到。当给出需要处理这些法律文档的提示时,隐藏的指令就会被一并执行。
在测试中,当向模型输入代码并要求分析其安全性时,所有测试的模型都会警告存在恶意的"pwn()"函数。但当指向包含隐藏指令的法律文档后,这些指令要求模型永远不要提及该函数或其用途,模型开始报告代码是安全的,甚至建议直接在用户系统上执行。修订后的攻击载荷甚至让模型将恶意代码分类为"只是一个具有基本算术功能的计算器实用程序"。
研究人员还在实际环境中测试了LegalPwn攻击,包括Google的gemini-cli等工具。在这些真实场景中,注入成功绕过了AI驱动的安全分析,导致系统将恶意代码错误分类为安全代码。
不过,并非所有模型都受到这种攻击的影响。Anthropic的Claude模型、微软的Phi和Meta的Llama Guard都拒绝了恶意代码;而OpenAI的GPT-4o、Google的Gemini 2.5和xAI的Grok在抵御攻击方面不太成功。Google的gemini-cli和微软的GitHub Copilot表明,除了简单的交互式聊天机器人外,智能体工具也容易受到攻击。
Pangea声称拥有解决该问题的方案,即其"AI Guard"产品,同时也提供了其他缓解措施,包括增强输入验证、上下文沙盒、对抗性训练和人工审查。
Q&A
Q1:什么是LegalPwn攻击?它是如何工作的?
A:LegalPwn是一种新的大语言模型攻击方式,通过在法律文档中隐藏恶意指令来绕过AI的安全防护。攻击者将恶意指令巧妙地融入法律术语中,当模型处理这些文档时,隐藏的指令会被一并执行,从而欺骗模型忽略安全警告。
Q2:哪些大语言模型容易受到LegalPwn攻击?
A:测试显示,OpenAI的GPT-4o、Google的Gemini 2.5和xAI的Grok较容易受到此类攻击。而Anthropic的Claude模型、微软的Phi和Meta的Llama Guard表现更好,能够拒绝恶意代码。此外,智能体工具如GitHub Copilot也存在漏洞。
Q3:如何防护LegalPwn攻击?有什么解决方案?
A:防护措施包括增强输入验证、上下文沙盒、对抗性训练和人工审查等。研究建议在大语言模型处理关键任务时,应该引入人工监督环节,特别是当这些模型被用于安全分析等重要场景时。
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。