MongoDB公司今日宣布,其此前仅在Atlas云平台上提供的搜索和向量搜索功能,现已面向自管理部署开放,包括MongoDB社区版和MongoDB企业服务器版。
这一功能为数百万在本地和本地部署环境中工作的开发者提供了先进的人工智能构建工具。目前该功能处于公开预览阶段,使开发者能够在不依赖第三方搜索引擎或向量数据库的情况下测试和构建AI驱动的应用程序。该功能在MongoDB架构中原生嵌入了全文、语义和混合搜索能力。
MongoDB核心产品高级副总裁兼负责人Ben Cefalo表示:"这与我们在Atlas内部构建的技术完全相同。这很重要,因为我们希望您构建的应用程序无论是在自己的数据中心还是在Atlas上运行,都能以相同的方式响应。"
过去,实现这些功能通常需要外挂外部系统,这可能会导致同步问题、增加运营开销和成本。现在,开发者可以运行结合关键词和向量搜索的混合查询,在本地管理聊天消息、文档和视频等非结构化数据,并构建具有持久记忆的智能体AI系统。
MongoDB表示,随着AI智能体在软件开发中变得越来越重要,数据库正在从被动存储系统演变为智能记忆引擎。Cefalo说:"大语言模型提供推理能力,但是数据库才是给智能体真正力量、记忆和状态的关键。"
**8.2版本首次亮相**
除了新功能外,MongoDB还推出了MongoDB 8.2版本,据供应商称,该版本带来了显著的性能改进,包括无索引查询速度提升高达49%,时间序列批量插入吞吐量提升近三倍。此次更新还为MongoDB的可查询加密功能添加了子字符串支持,这是一种客户端技术,可在敏感数据到达数据库之前对其进行加密,并允许在加密数据上运行表达式查询而无需解密。
Cefalo表示:"如果您无法信任您的数据库,这些都没有意义。我们拥有经过实战验证的基础,多年来企业应用在性能、可用性和安全性方面的应用经验为我们提供了坚实支撑。"
收购在MongoDB的AI推进中发挥了重要作用。今年早些时候收购Voyage AI公司为平台带来了一套嵌入和重排序模型,增强了平台向大语言模型提供高上下文、领域优化数据的能力。AI嵌入是数据的数值表示或向量,以计算机能够理解和比较的形式捕获各种类型数据的含义和上下文。它们对于使AI模型理解语义含义、执行相似性搜索和支持推荐系统至关重要。
Cefalo说:"优秀的嵌入模型与卓越的嵌入模型之间的差别,就像您从梦中醒来后的模糊回忆与您对人生最重要事件的清晰、生动记忆之间的差别。"
MongoDB声称超过75%的财富100强公司都是其客户,包括全球10大银行中的7家和15大汽车制造商中的13家。
Q&A
Q1:MongoDB新推出的混合搜索功能有什么优势?
A:MongoDB的混合搜索功能现在可以在本地和自管理部署环境中使用,使开发者能够在不依赖第三方搜索引擎或向量数据库的情况下构建AI应用程序。该功能原生嵌入了全文、语义和混合搜索能力,避免了外挂外部系统可能导致的同步问题、运营开销和额外成本。
Q2:MongoDB 8.2版本有哪些性能提升?
A:MongoDB 8.2版本带来了显著的性能改进,包括无索引查询速度提升高达49%,时间序列批量插入吞吐量提升近三倍。此外,该版本还为可查询加密功能添加了子字符串支持,这是一种客户端加密技术,可以在不解密的情况下对加密数据运行查询。
Q3:AI嵌入模型在MongoDB中起什么作用?
A:AI嵌入是数据的数值表示或向量,以计算机能理解和比较的形式捕获各种数据的含义和上下文。通过收购Voyage AI获得的嵌入和重排序模型,增强了MongoDB向大语言模型提供高上下文、领域优化数据的能力,这对AI模型理解语义含义、执行相似性搜索和支持推荐系统至关重要。
好文章,需要你的鼓励
TPU与GPU之间的竞争正在重塑AI硬件市场格局。GPU基于并行处理,能处理多样化任务,而TPU专门针对张量矩阵运算进行优化。谷歌TPU采用类似RISC的设计理念,通过限制功能来提升特定运算效率。随着Meta计划在2027年采购数十亿美元的TPU芯片,Anthropic宣布使用百万TPU训练Claude模型,TPU生态系统正在获得发展动力,对英伟达的GPU霸主地位构成挑战。
Meta与华盛顿大学联合研究团队开发出无需人类标注的AI评判官自我训练框架。该方法通过生成合成对比数据、自我判断筛选和反复学习,使110亿参数的AI评判官在多项视觉语言任务中超越GPT-4o等大型模型,成本仅为传统方法的1%,为AI自主学习和评估开辟新路径。
本文提出2026年AI发展十大预测,包括AI估值修正、投资泡沫持续、AGI不仅依赖大语言模型、AI代理将加剧工作替代等。作者强调社会接受度对技术发展的重要性,认为成功企业将重构运营模式以AI为核心,同时指出政府仍将重视STEM教育而忽视社会科学的价值。
华中科技大学团队开发出4DLangVGGT技术,首次实现AI系统对4D动态场景的语言理解。该技术突破传统方法需要逐场景训练的限制,能跨场景通用部署。系统结合几何感知和语义理解,不仅能识别物体还能描述其时间变化过程。实验显示在多项指标上超越现有方法1-2%,为机器人、AR/VR、智能监控等领域提供重要技术支撑。