文档数据库长期以来一直是关键应用程序的支柱——现在,它们正在进入一个智能化和功能强化的新时代。通过将生成式AI直接嵌入数据层,其影响不仅仅是技术升级,更是实现更快交付、精简运营和智能扩展的战略性变革。
"当你能够将大语言模型的全部能力放入数据库内部时,你可以做到许多令人惊叹的事情,"RavenDB首席执行官兼创始人Oren Eini表示。"这是对AI在企业软件堆栈中归属位置的重新思考。通过将AI置于数据引擎内部,各种规模的组织都能轻松创建智能应用程序。在系统各个方面应用AI能力的民主化将带来我们构建软件思维方式的巨大转变。"
将查询转化为智能操作
过去,你需要成为数据标记专家,花费大量时间和精力对所有数据进行适当分类,创建完整的搜索系统等等。通过在数据层引入AI,你可以使用模型来完成大部分工作,然后在此基础上应用向量搜索。
生成式AI让用户能够使用大语言模型直接在数据库内生成、丰富、分类和自动化内容及决策。在数据实际存储位置部署AI能力可实现安全、高效的实时执行,无论是文档分类、客户交互摘要还是工作流自动化。这让团队能够直接基于已管理的数据构建功能,无需专门的AI团队。
"这为你提供了强大的能力,而这种能力以前只有最大的公司才能拥有,"Eini说。"你可以拥有真正高质量的系统,与谷歌或微软能够运行的系统相媲美,但成本只是它们的一小部分,部署过程也很迅速。基于现有数据,你可以在几天内从零开始构建一流的智能系统。"
这种集成对于没有大型AI团队或专门MLOps基础架构的组织来说意义重大。对于许多用途而言,直接在核心数据库引擎中添加生成式AI能力,相比服务包装器或专有云堆栈是一个重大飞跃,显著降低了复杂性。
Eini指出,这是一种简单直接的方法,他展示了RavenDB如何让客户在其产品中集成AI。这种方法让用户能够更充分地利用数据,具备内置的摘要、分类和标记支持。RavenDB用户甚至可以创建直接在数据库内丰富数据集的工作流,并使用数据生成额外的文档和信息——从被动的数据检索转向将数据作为创新催化剂。
RavenDB的差异化优势
"本质上,我们的目标是通过使其简单、可预测、可持续和经济实惠来普及大语言模型在系统中的使用,"Eini说。"其他系统中的大多数AI集成只是允许你对模型进行远程调用,如果你想直接从数据库向模型提供一些数据然后将响应返回给用户,这还不错。但这种工作流的问题在于它不允许你真正利用模型操作的结果,或个性化和优化大语言模型行为。"
"另一方面,"他解释道,"RavenDB的方法是创建专门的管道,开发人员只需输入告诉模型需要做什么的提示,模型连同数据库中的数据一起处理请求,并持续将结果应用于数据库。"
RavenDB将调用模型对任何新添加的数据应用用户逻辑,这意味着不再需要等待很长时间才能获得结果。向数据库注入"智能"还可以在不需要时避免使用模型。RavenDB可以检测特定数据是否与模型定义的任务相关,如果不相关则跳过模型调用(消除不必要的模型调用和相关成本)。
RavenDB的新功能支持在数据库内部安全使用任何大语言模型,无论是来自OpenAI、Mystral或Grok等公司的商业产品,还是开源模型。客户还可以插入专业模型,如医疗大语言模型,或针对客户特定需求进行微调的模型。RavenDB在其产品中使用的"默认治理"方法限制了模型的能力范围,使其无法对数据库进行任何未经批准的更改或访问内部系统——这不仅使应用程序开发更快,而且更安全,让风险团队更加放心。
无需复杂的数据管道、供应商特定的API以及大量的工程和数据科学知识来从原型转向生产,组织内的团队现在可以直接在数据库内运行生成式AI任务,显著缩小了实验与最终结果之间的差距。
"开发人员突然对困扰他们最多的所有问题拥有了完全控制权,包括成本、性能和合规性,"Eini说。"从我们的角度来看,关键在于通过让你更容易在系统中使用AI,我们让你能够在各个地方应用复杂模型。我们的想法是,原本需要几个月的集成过程,现在变得像运行查询一样简单。最终结果是一种让从想法到实现比以往任何时候都更快、几乎无缝的技术。"
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。