Google今天在伦敦举行的云峰会上发布了Firebase Studio的更新,新增了Gemini命令行界面(CLI)集成、初步的模型上下文协议(MCP)支持以及"智能体模式"。
智能体模式融合了熟悉和全新的功能元素。该模式提供三个不同层次的AI协作方式。"Ask"是用于头脑风暴和规划的对话模式。还有一个人机协作智能体,Gemini会建议代码更改,但开发者必须在应用前进行审批。最后是第二种智能体模式,几乎完全自主运行——敏感操作仍需获得许可——但Gemini可以自主编写代码、修复错误并构建功能。
这些更新在Google伦敦云峰会的第二场主题演讲中展示,相比4月发布的版本有了显著改进。Google声称已有"数百万"应用使用该平台开发,但对于将开发者分为实验用户和生产用户的具体数据则较为保守。
我们进行了试用,虽然能够通过提示语启动应用程序,但提示语的制作需要谨慎。该服务还未达到非工程师用户能够轻松制作精美应用的程度,但正在朝这个方向发展。
至于其他更新,Gemini CLI集成对于偏好命令行工作且不喜欢切换窗口的开发者来说是一个受欢迎的补充,MCP集成也很实用,尽管这可以说是AI驱动工具集应该具备的基本功能。
Firebase完全聚焦于AI智能体——在此情况下,Google对该术语的定义是无需人工批准即可自主构建代码。这对于快速生成原型或概念验证很有用,但距离生产就绪还有一定距离。例如,目前无法为用户应用基于角色的访问控制——管理员可能希望某些用户只有只读权限。
当我们上次关注Firebase时,它展现出了前景,但也充满了炒作(这在AI领域很常见)。最新发布在一定程度上兑现了承诺。虽然所创建的应用和服务仍相对简单,但复杂性有所提升,且创建的内容在Google云上运行。然而,开发速度令人印象深刻。
虽然编程助手工具众多,但Firebase致力于闭环开发的努力暗示了一个可能让开发者夜不能寐的未来——或者,如果AI布道者是对的,将迎来一个新的生产力时代。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。