AWS通过升级其机器学习和AI模型训练推理平台SageMaker来巩固市场地位,新增可观测性功能、连接编码环境和GPU集群性能管理等能力。
然而,AWS继续面临来自Google和Microsoft的竞争,这些竞争对手同样提供许多有助于加速AI训练和推理的功能。
SageMaker在2024年转型为整合数据源和访问机器学习工具的统一中心,此次新增的功能可以深入洞察模型性能下降的原因,并为AWS客户提供更多计算资源分配控制能力。
其他新功能包括将本地集成开发环境(IDE)连接到SageMaker,使本地编写的AI项目能够在平台上部署。
SageMaker总经理Ankur Mehrotra告诉VentureBeat,这些新更新许多都源于客户需求。
"我们看到客户在开发生成式AI模型时面临的一个挑战是,当出现问题或运行结果不符合预期时,很难找出技术堆栈中哪一层出了问题,"Mehrotra说。
SageMaker HyperPod可观测性功能使工程师能够检查技术堆栈的各个层级,如计算层或网络层。如果出现任何问题或模型变慢,SageMaker可以发出警报并在仪表板上发布指标。
Mehrotra提到他的团队在训练新模型时遇到的实际问题,训练代码开始给GPU造成压力,导致温度波动。他说,如果没有最新工具,开发人员需要几周时间才能识别问题源头并修复。
连接IDE功能
SageMaker已经为AI开发人员提供了两种训练和运行模型的方式。它提供完全托管的IDE访问,如Jupyter Lab或代码编辑器,通过SageMaker无缝运行模型训练代码。考虑到其他工程师更喜欢使用包含所有扩展的本地IDE,AWS也允许他们在本地机器上运行代码。
然而,Mehrotra指出,这意味着本地编码的模型只能在本地运行,如果开发人员想要扩展,这就成了重大挑战。
AWS新增安全远程执行功能,允许客户继续使用他们偏好的IDE——无论是本地还是托管——并连接到SageMaker。
"这项功能现在为他们提供了两全其美的解决方案,如果需要,他们可以在本地IDE上进行开发,但在实际任务执行方面,可以受益于SageMaker的可扩展性,"他说。
计算资源更灵活
AWS在2023年12月推出SageMaker HyperPod,帮助客户管理用于训练模型的服务器集群。类似于CoreWeave等提供商,HyperPod使SageMaker客户能够将未使用的计算能力导向首选位置。HyperPod根据需求模式知道何时调度GPU使用,让组织能够有效平衡资源和成本。
然而,AWS表示许多客户希望在推理方面也有同样的服务。许多推理任务在白天进行,即人们使用模型和应用的时候,而训练通常安排在非高峰时段。
Mehrotra指出,即使在推理环境中,开发人员也可以优先考虑HyperPod应该关注的推理任务。
AI智能体公司H AI的联合创始人兼CTO Laurent Sifre在AWS博客文章中表示,该公司在构建智能体平台时使用了SageMaker HyperPod。
"从训练到推理的无缝过渡简化了我们的工作流程,缩短了产品上市时间,并在实时环境中提供了一致的性能,"Sifre说。
AWS与竞争对手
亚马逊虽然可能没有像云服务竞争对手Google和Microsoft那样提供最引人注目的基础模型,但AWS更专注于为企业构建AI模型、应用或智能体提供基础设施支撑。
除了SageMaker,AWS还提供专门为构建应用和智能体设计的平台Bedrock。
SageMaker已经存在多年,最初作为连接分散的机器学习工具与数据湖的手段。随着生成式AI热潮开始,AI工程师开始使用SageMaker帮助训练大语言模型。然而,Microsoft正在大力推广其Fabric生态系统,已有70%的财富500强企业采用,力争成为数据和AI加速领域的领导者。Google通过Vertex AI在企业AI采用方面也悄然取得进展。
当然,AWS拥有作为使用最广泛的云服务提供商的优势。任何使其众多AI基础设施平台更易于使用的更新都将是有益的。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。