谷歌已经建立了一个人工智能模型,可以分析人体胸部的CT扫描结果,以确定他们是否患有肺癌。
该公司今天在博客文章中详细介绍了这款软件,这是谷歌两年开发工作的成果。作为美国国立卫生研究院的一项研究的一部分,谷歌使用从15,000名患者中采集的42,000次胸部扫描数据集训练人工智能检查肿瘤。在完成了培训阶段的工作后,谷歌的研究人员使用了来自西北大学的大约3,800张CT图像来评估人工智能的准确性。
谷歌将该模型得出的结论和六名放射科医生进行了对比,这些放射科医生平均有八年的临床经验。在一项测试中,所有的参与者仅被允许检查每位患者的一张CT图像,人工智能确定的癌症病例比专家确定的病例数多5.5%,假阳性率降低11%。在可以获得多张扫描图像的测试中,该模型和放射科医生们得出的结果几乎相同。
除了证明它能够和训练有素的医疗专业人员水平相当之外,该人工智能还被证明能够识别肺结节,这是一种在大多数情况下是良性,但有时候可能会变成癌细胞的小块组织。它们通常很难被发现,因为它们在CT图像中看起来像是微弱的白色阴影。
根据谷歌的说法,它的人工智能不仅可以发现结节,还可以比较一段时间内进行的扫描,以确定结节的增长是否显示出恶性迹象。在分析初步筛查两年后拍摄的CT图像时,该模型发现的癌症发生率比放射科医师多9.5%。
谷歌在最新一期《自然医学》杂志上发表了一篇学术论文,详细介绍了该项目。此外,该公司还计划通过Cloud Healthcare API提供该人工智能模型,Cloud Healthcare API是针对医疗行业的公共云服务和功能的集合。
谷歌该项目的技术负责人Shravya Shetty 写道:“尽管肺癌检查有价值,但今天只有2-4%符合条件的美国患者接受了筛查,……这项工作证明了人工智能可以提高准确性和一致性的潜力,这有助于加速全球肺癌筛查的采用。”
好文章,需要你的鼓励
阿里纳德数据中心与Calibrant Energy合作开发首创电池储能系统,通过绕过传统电网升级时间线,使俄勒冈州希尔斯伯勒在建数据中心园区提前数年上线。该31兆瓦、62兆瓦时储能系统计划2026年投运,将作为响应电网的动态资产,在需求高峰期放电,增强区域电网可靠性。这标志着美国首次使用专用电池系统加速大型数据中心并网。
威斯康星大学研究团队开发了LUMINA系统,专门检测AI在回答问题时的"撒谎"行为。该系统发现AI有时会忽视提供的参考资料,固执地依赖内部知识生成不准确回答。LUMINA通过监测AI对外部文档和内部知识的依赖程度来识别这种行为,在多个测试中达到90%以上的准确率,比以往方法提升13%,为构建更可信的AI系统提供了重要工具。
微软在Edge浏览器中推出增强版Copilot模式,提供更强大的AI代理功能,目前在美国进行限量预览。该模式包含Actions和Journeys两大功能:Actions让浏览器能代表用户执行任务,如语音控制打开网页或查找文章特定内容;Journeys则记住用户浏览历史,帮助用户继续之前的研究任务。此举正值AI浏览器竞争加剧,OpenAI推出ChatGPT Atlas、Perplexity发布Comet、谷歌集成Gemini到Chrome。目前Chrome占据71%市场份额,Edge仅占4.67%。
这项由法国CentraleSupélec大学领导的研究通过严格控制的实验,系统比较了AI的推理训练与传统训练方式。研究发现推理训练在数学、开放式任务中效果显著,但需要70亿参数以上模型才能充分发挥优势,且成本增加明显。研究为AI开发者提供了明确的应用指导,有助于根据具体场景选择最优训练策略。