IDC对人工智能边缘处理器的首个预测显示,2019年全球面向边缘系统的AI优化处理器出货量将达到3.401亿个,比2018年增长170.0%,到2023年出货量将达到15个,实现64.9%的五年复合年增长率(CAGR)。
人工智能的出现正在颠覆微处理器市场。虽然通用处理器和图形处理器单元(GPU)的开发,给体积更小、移动性更高、由电池供电的设备带来了巨大的计算能力,但这些处理器并不是神经网络推理解决方案的理想平台。与通用架构相比,AI优化的处理器带有独立的加速器和主机处理器,在处理器中集成了神经网络加速器,使得运行AI解决方案的性能要高通用架构。如今主要的提供商都在顺应这一趋势,开发能够解决满足这一新计算模式的解决方案,一些新兴处理器提供商也进入这个市场,其中包括一系列风投支持的半导体初创公司发布了新的IP和加速器。
随着人工智能解决方案在网络边缘不断扩展,以及人工智能工作负载不再局限于基本的系统优化任务,对于这种AI优化的处理器来说,市场机会越来越多。2018年运行AI的边缘系统中只有5.1%采用了优化的处理器。到2023年,这一比例预计将达到40.5%。到2023年,AI优化的处理器收入预计将达到404亿美元,复合年增长率为86.4%。
该预测中提到的边缘系统包括主要客户端,例如PC、手机、平板电脑;边缘基础设施网关和服务器;部署在企业、政府和家庭网络边缘的端点和物联网设备。边缘AI处理器的一些关键应用领域包括汽车高级驾驶员辅助系统(ADAS)、游戏系统、智能家居和视频监控,其他主要市场包括工业自动化、医疗设备、AR/VR设备、机器人和无人机等。
IDC赋能技术和半导体研究团队研究主管Michael J. Palma表示:“人工智能的成功在于部署到边缘的系统,在边缘位置,神经网络做出的即时决策是可以创造价值的,不受延迟和连接问题的限制,而这正是云解决方案所面对的一大挑战。边缘AI能否取得成功要取决于高效计算处理元件的开发,这些元件针对AI工作负载进行了优化,支持大多数边缘系统功率受限的特性。目前,离散加速器提供了最佳性能,但也增加了BOM成本,最终能否取得成功可能要取决于在主机处理器中AI优化处理元件的集成。”
好文章,需要你的鼓励
VMware宣布将终止现有渠道合作伙伴计划,新计划采用邀请制,大幅减少授权合作伙伴数量。未受邀合作伙伴将于2025年7月15日收到不续约通知,可继续交易至10月31日。白标计划也将同时终止。此举是18个月内VMware第二次重大合作伙伴调整,旨在专注与少数核心云服务提供商深度合作。客户可能面临续约困难、服务质量下降和成本上升等影响。
StepFun公司推出的Step1X-Edit是首个能够媲美GPT-4o和Gemini2 Flash等商业模型的开源图像编辑AI。该模型通过整合多模态语言理解和扩散图像生成技术,能够处理11种编辑任务,在新构建的GEdit-Bench基准测试中表现优异,为图像编辑技术的民主化开辟了新道路。
谷歌DeepMind和伦敦大学学院研究发现,大语言模型在面对反驳时会迅速失去信心并改变答案,即使反驳是错误的。研究显示LLM既会对自己的答案过度自信,又对批评异常敏感,表现出与人类相似但又独特的认知偏差。这种行为对多轮对话AI系统构成威胁,最新信息可能对LLM推理产生不成比例的影响。
BluOrion公司开发的ZClip是一种智能梯度裁剪算法,解决了大型语言模型训练中的梯度爆炸和损失飙升问题。通过Z分数统计检测和动态调整策略,ZClip能够自适应地控制梯度幅度,相比传统固定阈值方法提升训练效率35%以上,同时显著降低训练失败风险,为大模型训练提供了更稳定、高效的解决方案。