基于成本、能耗、可靠性和时延、隐私、个性化服务等考虑,端云混合的 AI 才是 AI 的未来,高通认为终端 AI 能力是赋能混合 AI 并让生成式 AI 实现全 球规模化扩展的关键。
百亿参数开源 MoE 大模型 Mixtral 8x7B 再掀热潮,性能超 LLaMA2-70B,对 标 GPT-3.5。MoE(混合专家模型)通过将任务分配给对应的一组专家模型来 提高模型的性能和效率。Mixtral 8x7B 的专家数量为 8 个,总参数量为 470 亿, 但在推理过程中仅调用两个专家即只调用 130 亿参数。
我们认为 MoE 或为现阶段大模型平衡成本、延迟以及性能的最优选择,叠加 开源模型本身高灵活性、安全性和高性价比特点,Mistral AI 的开源 MoE 轻量 化模型可能是未来最适合部署于终端的模型。
目前,高通、联发科、英特尔、 AMD 等龙头芯片厂商都推出了终端 AI 芯片,能跑十亿甚至百亿量级大模型。后 续类 Mixtral 8x7B 的 SMoE 模型在高性能基础上继续压缩的话,很大几率可以 装进终端设备实现本地运行。
SMoE 轻量模型大幅降低了训练的门槛和成本, 且由于在推理时只激活少部分参数,保持较高性能的同时能适应不同的计算环 境,包括计算能力有限的终端,降低推理成本且将催生更多大模型相关应用。
2024 年有望成为终端智能元年,看好拥有终端资源、深耕场景、掌握行业 knowhow、积累了海量数据的 B 端和 C 端公司。
1)未来每台终端都将是 AI 终端,包括 AI PC、AI 手机、AI MR 等,这将带来全新的用户体验。
2)AI PC 有望成为“AI+”终端中最先爆发的。英特尔预计全球今年将交付 4000 万台 AI PC,明年将交付 6000 万台,预估 2025 年底 AI PC 在全球 PC 市场中占比将超 过 20%;微软 AI PC 预计于今年亮相。
3)随着大模型逐步发展,尤其是多模态 能力增强,更广泛的 AIoT 设备也迎来了更新换代的重要机遇。
4)B 端私有化 部署也是 AI 应用的重要方向,关注边缘侧 AI。
5)鸿蒙:提供顶级流畅连接体 验,大模型有望赋能奔赴万物智联下一站。
人形机器人是大模型应用的重要硬件载体,也是终端智能发展的核心方向。
1) 人形机器人是目前具身智能最好的形态,因为它们有着与人相似的外观设计, 能更好地适应周围的环境和基础设施。2)端云混合的“大脑”让机器人既能处理 复杂和高强度的计算任务,又能实时进行信息处理和分析。
好文章,需要你的鼓励
LibreOffice 25.8版本以"更智能、更快速、更可靠"为特色正式发布。新版本在多个方面实现性能优化,包括启动速度、文档滚动和文件打开速度的显著提升。该版本增强了对微软Office文档格式的兼容性,改进了连字符处理和字体兼容性,Calc表格组件新增十多个函数以更好支持Excel文件导入。值得注意的是,LibreOffice 25.8首次支持PDF 2.0格式导出,并具备PDF数字加密和签名功能。新版本提高了系统要求,不再支持Windows 7/8系列和32位系统。
谷歌DeepMind团队开发出ViNT视觉导航系统,让机器人像人类一样仅通过"看"就能在陌生环境中导航。该系统模仿ChatGPT的学习方式,通过分析600万个导航轨迹掌握通用导航能力,在未知环境中的成功率达87%。这一突破将推动物流配送、家庭服务、搜救等领域的机器人应用发展。
微软AI首席执行官苏莱曼发文称,研究AI福利和意识"既不成熟又危险",认为这会加剧人类对AI的不健康依赖。而Anthropic、OpenAI等公司正积极研究AI意识问题,招聘相关研究人员。业界对AI是否会产生主观体验及其权利问题分歧严重。前OpenAI员工认为可以同时关注多个问题,善待AI模型成本低且有益。随着AI系统改进,关于AI权利和意识的辩论预计将升温。
谷歌DeepMind推出AlphaFold3,革命性提升分子结构预测能力。该AI模型采用创新扩散网络架构,能够精确预测蛋白质与DNA、RNA、药物等分子的相互作用,准确率比传统方法提高50%以上。这一突破将显著加速新药开发,推动基础科学研究,并通过免费开放服务促进全球科研合作,标志着生命科学研究进入AI驱动的新时代。