Unsloth微调Llama3-8B,提速44.35%,节省42.58%显存,最少仅需7.75GB显存

我们实测了Unsloth所带来的训练增益,对Llama3-8B进行QLoRA训练,最少仅需7.75GB显存,这意味着我们可以在一张1080Ti上训练Llama3-8B,进一步降低了大模型训练的硬件门槛。开启Unsloth后,Llama3-8B的训练速度可提升44.35%,训练时间可减少30.72%,显存占用可减少42.58%。更详细的测试设置可参考第三节。

01

前言

本文主要介绍Unsloth,它可以显著提升大模型的训练速度,减少显存占用,我们将其整合到Firefly训练框架中,实现对Llama3、Llama2、Mistral、Gemma、Zephyr等模型训练的「降本增速」。

Unsloth微调Llama3-8B,提速44.35%,节省42.58%显存,最少仅需7.75GB显存

我们实测了Unsloth所带来的训练增益,对Llama3-8B进行QLoRA训练,最少仅需7.75GB显存,这意味着我们可以在一张1080Ti上训练Llama3-8B,进一步降低了大模型训练的硬件门槛开启Unsloth后,Llama3-8B的训练速度可提升44.35%,训练时间可减少30.72%,显存占用可减少42.58%。更详细的测试设置可参考第三节。

Firefly项目链接:

https://github.com/yangjianxin1/Firefly

Unsloth项目链接:

https://github.com/unslothai/unsloth

 

02

Unsloth简介

Unsloth是一个开源的大模型训练加速项目,使用OpenAI的Triton对模型的计算过程进行重写,大幅提升模型的训练速度,降低训练中的显存占用Unsloth能够保证重写后的模型计算的一致性,实现中不存在近似计算,模型训练的精度损失为零Unsloth支持绝大多数主流的GPU设备,包括V100, T4, Titan V, RTX 20, 30, 40x, A100, H100, L40等,支持对LoRA和QLoRA的训练加速和高效显存管理,支持Flash Attention。

Unsloth对大模型的训练提升如下图所示。在一张A100上,使用QLoRA对不同的模型进行训练,Llama2-7B的训练速度是原来的1.87倍,显存占用减少39.3%,Mistral-7B速度是来的1.88倍,显存占用减少65.9%。在无精度损失的前提下,Unsloth对大模型训练具有显著的「降本增速」作用,可谓是「免费的午餐」。

Unsloth微调Llama3-8B,提速44.35%,节省42.58%显存,最少仅需7.75GB显存

 

更重要的是,Unsloth与HuggingFace生态兼容,可以很容易将其与transformers、peft、trl等代码库进行结合,以实现模型的SFT与DPO,仅需修改模型的加载方式即可,无需对此前的训练代码进行过多的修改。Demo如下所示。

from unsloth import FastLanguageModel
import
torch
from trl
import SFTTrainer
from transformers
import TrainingArguments

from
datasets import load_dataset
max_seq_length = 2048
# Supports RoPE Scaling interally, so choose any!

# Get LAION dataset
url = "https://huggingface.co/datasets/laion/OIG/resolve/main/unified_chip2.jsonl"dataset = load_dataset("json", data_files = {"train" : url}, split = "train")
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.fourbit_models = [ "unsloth/mistral-7b-bnb-4bit", "unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "unsloth/llama-2-7b-bnb-4bit", "unsloth/gemma-7b-bnb-4bit", "unsloth/gemma-7b-it-bnb-4bit",
# Instruct version of Gemma 7b
"unsloth/gemma-2b-bnb-4bit", "unsloth/gemma-2b-it-bnb-4bit",
# Instruct version of Gemma 2b
"unsloth/llama-3-8b-bnb-4bit",
# [NEW] 15 Trillion token Llama-3
"unsloth/Phi-3-mini-4k-instruct-bnb-4bit",]
# More models at https://huggingface.co/unsloth

model, tokenizer = FastLanguageModel.from_pretrained( model_name = "unsloth/llama-3-8b-bnb-4bit", max_seq_length = max_seq_length, dtype = None, load_in_4bit = True,)
# Do model patching and add fast LoRA weightsmodel = FastLanguageModel.get_peft_model( model, r = 16, target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",], lora_alpha = 16, lora_dropout = 0,
# Supports any, but = 0 is optimized
bias = "none",
# Supports any, but = "none" is optimized
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes! use_gradient_checkpointing = "unsloth",
# True or "unsloth" for very long context
random_state = 3407, max_seq_length = max_seq_length, use_rslora = False, # We support rank stabilized LoRA loftq_config = None, # And LoftQ)
trainer = SFTTrainer( model = model, train_dataset = dataset, dataset_text_field = "text", max_seq_length = max_seq_length, tokenizer = tokenizer, args = TrainingArguments( per_device_train_batch_size = 2, gradient_accumulation_steps = 4, warmup_steps = 10, max_steps = 60, fp16 = not torch.cuda.is_bf16_supported(), bf16 = torch.cuda.is_bf16_supported(), logging_steps = 1, output_dir = "outputs", optim = "adamw_8bit", seed = 3407, ),)trainer.train()

尚未开源的Unsloth Pro与Max版本,有着更强劲的训练效率的提升。

Unsloth微调Llama3-8B,提速44.35%,节省42.58%显存,最少仅需7.75GB显存

目前开源版本的Unsloth,仅支持单机单卡训练,且仅支持Llama2、Llama3Mistral、Gemma、Zephyr、TinyLlama、Phi-3等模型。遗憾的是,Qwen2并不在Unsloth的支持列表中,该需求在Unsloth的issue中也被频繁提及。

Unsloth官方在短期内暂时没有支持Qwen2的计划,更多的是建议用户将Qwen2的权重进行Llama化,然后采用Llama的训练方式。但对Qwen2的权重进行Llama化后,模型性能有显著的下降。对于该问题,Firefly项目组也正在进行尝试,希望能够使Unsloth原生支持Qwen2,目前处于测试阶段,敬请期待

Unsloth微调Llama3-8B,提速44.35%,节省42.58%显存,最少仅需7.75GB显存

 

03

Unsloth实践 & 测试

拉取Firefly代码库:

git clone https://github.com/yangjianxin1/Firefly.git

在Firefly中启动Unsloth训练Llama3,仅需在训练配置文件中将use_unsloth设为true即可,use_unsloth默认为False

Unsloth微调Llama3-8B,提速44.35%,节省42.58%显存,最少仅需7.75GB显存

使用Unsloth,需要安装或者更新如下python包:
pip install git+https://github.com/unslothai/unsloth.git
pip install transformers==4.37

pip install bitsandbytes==0.43.1

pip install peft==0.10.0

pip install torch==2.2.2

pip install xformers==0.0.25.post1
使用Firefly对Llama3-8B进行SFT的启动命令:
python train.py --train_args_file train_args/sft/qlora/llama3-8b-sft-qlora.json
值得注意的是,目前Unsloth仅支持以下模型,更多详情可查看Unsloth官方介绍。

Unsloth微调Llama3-8B,提速44.35%,节省42.58%显存,最少仅需7.75GB显存

 

我们在一张V100上对Llama3-8B进行QLoRA训练,使用相同的数据集训练50步,开启gradient_checkpointing,每条数据均padding至max_seq_length,在所有linear层均插入adapter,由于V100不支持Flash Attention,所以测试未开启Flash AttentionUnsloth所带来的训练增益如下表所示。

结合QLoRA与Unsloth训练Llama3-8B,最少仅需7.75GB显存开启Unsloth后,Llama3-8B的训练速度可提升44.35%,训练时间可减少30.72%,显存占用可减少42.58%。当max_seq_length或者per_device_train_batch_size增大时,Unsloth节省显存的优势更加明显。

Unsloth微调Llama3-8B,提速44.35%,节省42.58%显存,最少仅需7.75GB显存

从上述结果来看,Unsloth对于训练加速和节省显存的效果非常显著,我们也正在对Unsloth支持Qwen2的工作进行尝试。

 

来源:YeungNLP

0赞

好文章,需要你的鼓励

2024

05/07

13:04

分享

点赞

YeungNLP

Firefly开源中文大语言模型官方公众号。

最近文章 :