5月9日消息,阿里云正式发布通义千问2.5,模型性能全面赶超GPT-4 Turbo,成为地表最强中文大模型。同时,通义千问最新开源的1100亿参数模型在多个基准测评收获最佳成绩,超越Meta的Llama-3-70B,成为开源领域最强大模型。
相比通义千问2.1版本,通义千问2.5的理解能力、逻辑推理、指令遵循、代码能力分别提升9%、16%、19%、10%,中文能力更是持续领先业界。在权威基准OpenCompass上,通义千问2.5得分追平GPT-4 Turbo,是该基准首次录得国产大模型取得如此出色的成绩。
通义还发布了最新款开源模型,1100亿参数的Qwen1.5-110B,该模型在MMLU、TheoremQA、GPQA等基准测评中超越了Meta的Llama-3-70B模型;在HuggingFace推出的开源大模型排行榜Open LLM Leaderboard上,Qwen1.5-110B冲上榜首,再度证明通义开源系列业界最强的竞争力。
通义的多模态模型和专有能力模型也具备业界顶尖影响力。通义千问视觉理解模型Qwen-VL-Max在多个多模态标准测试中超越Gemini Ultra和GPT-4V,目前已在多家企业落地应用;通义千问代码大模型CodeQwen1.5-7B则是HuggingFace代码模型榜单Big Code的头名选手,还是国内用户规模第一的智能编码助手通义灵码的底座。
通义大模型问世一年多来,还发展出了业界领先的文生图、智能编码、文档解析、音视频理解等能力,企业客户和开发者可以通过API调用、模型下载等方式接入通义,个人用户可从通义APP、官网和小程序免费使用通义家族全栈服务。
好文章,需要你的鼓励
中科大团队开发出LongAnimation系统,解决了长动画自动上色中的色彩一致性难题。该系统采用动态全局-局部记忆机制,能够为平均500帧的动画进行稳定上色,性能比现有方法提升35-58%。核心创新包括SketchDiT特征提取器、智能记忆模块和色彩优化机制,可大幅提升动画制作效率。
传统数据工程面临数据质量差、治理不善等挑战,成为AI项目的最大障碍。多智能体AI系统通过协作方式正在彻底改变数据准备、治理和应用模式。Google Cloud基于Gemini大语言模型构建协作生态系统,让不同智能体专门负责数据工程、科学、治理和分析等任务。系统通过分层架构理解组织环境,自主学习历史工作流程,能够预防问题并自动处理重复性任务,大幅提升效率。
南开大学团队开发出DepthAnything-AC模型,解决了现有AI距离估算系统在恶劣天气和复杂光照条件下性能下降的问题。通过创新的扰动一致性训练框架和空间距离约束机制,该模型仅用54万张图片就实现了在雨雪、雾霾、夜晚等复杂环境下的稳定距离判断,同时保持正常条件下的优秀性能,为自动驾驶和机器人导航等应用提供了重要技术支撑。