7月23日凌晨,有人爆料,Meta的Llama 3.1-405B评测数据遭遇泄漏,明天可能会发布Llama 3系列中最大的参数模型,同时还会发布一个Llama 3.1-70B版本。
这也是在3.0版本基础之上进行了功能迭代,即便是70B的基础模型的性能也超过了GPT-4o。
就连磁力链接都流出来了,试了一下大约有763.84G。本来huggingface上也有的,后来库被删除了。
磁力地址:Magnet: magnet:?xt=urn:btih:c0e342ae5677582f92c52d8019cc32e1f86f1d83&dn=miqu-2&tr=udp%3A%2F%http://2Ftracker.openbittorrent.com%3A80
下载速度也还可以,每秒14M左右,看来确实是有不少人在下这个模型。
但这个模型一般的GPU肯定是跑不起来,如此大的参数在部署方面个人开发者也负担不起(如果你有一些H100也没问题),估计是给企业、政务公共部门用的。
对于Meta即将发布的模型,就有网友泼冷水。相比OpenAI最新的GPT-4o mini版本,Llama 3.1-70B推理成本提升了3倍,但编码的性能却要差很多。
从性价比、功能来看,Meta的新模型也没什么值得期待的。
还有人甚至在GitHub上看到了上述发布的模型,但很快就拿下来了,估计有一些人可能已经能使用了。
也有人表示,对于这个泄漏事件他认为是真的,因为这是从微软的Azure Github流出来的。
但是这个模型参数较大,对GPU的要求太高了,不如GPT-4o mini性价比高。
虽然模型是免费的,想运行起来还是相当费劲的,没有企业级的算力基础真的无法使用。所以,这对于企业来说是一个不错的好消息。
有人指出即便对Llama 3.1-405B模型进行大幅度优化,量化到5位数,仍然无法适用于消费级GPU,真的是对硬件要求特别高。
如果这份评测数据是真的,那么对于全球多数国家来说都是一个天大的福利。因为这是Meta的Llama 3系列的顶级模型并且是全部开放权重,也就是说人人都能用上免费的AI模型。
但是如果想开发生成式AI应用,也需要强大的AI算力基础、高质量数据以及微调技术。
由于监管机构和各种法案的原因,Meta一直在推迟405B系列模型的发布。那么,本次泄漏是否是Meta特意放出来的呢,因为这是他们的老传统了,去年的Llama模型就干过一次。
好文章,需要你的鼓励
戴尔在约一年之前推出了其Apex Red Hat OpenShift服务,支持在戴尔PowerEdge服务器上运行Red Hat OpenShift容器编排服务及带有SSD的PowerFlwx块存储。APEX是戴尔提供的一组服务,通过类似公有云的订阅模式提供计算、存储和网络设备。
第四次农业革命即将到来。包括物联网(IoT)部署(即用于收集和传输数据的数字化设备)以及AI在内的技术进步,正将效率推向新的顶点,并有望再次从根本上改变人类宰治整个地球的具体方式。
通过收购 Cradlepoint 和 Ericom 时所继承的知识产权、人力资本、渠道合作伙伴关系和客户关系(爱立信称全球有 36,000 多家企业)仍然是其发展主张的核心,并且基本上保持不变——尽管要将三家公司一个整体运作需要大量的后勤工作,但三家公司的合并同样是为了将爱立信的技术和专业知识转化为其服务属性。
沃达丰发布的《2024年顺应未来报告》(以下简称“顺应未来”报告)中揭示了一个激动人心的趋势:中国企业在拥抱数字化转型方面表现积极,在亚太地区排名第二,仅次于新加坡。然而,报告也引发了人们的疑问:人工智能的迅速发展究竟是信任的催化剂,还是担忧的制造者?中国企业如何在科技创新与社会责任之间取得平衡,并利用技术赢得消费者信任,实现长期增长?