7月23日凌晨,有人爆料,Meta的Llama 3.1-405B评测数据遭遇泄漏,明天可能会发布Llama 3系列中最大的参数模型,同时还会发布一个Llama 3.1-70B版本。
这也是在3.0版本基础之上进行了功能迭代,即便是70B的基础模型的性能也超过了GPT-4o。
就连磁力链接都流出来了,试了一下大约有763.84G。本来huggingface上也有的,后来库被删除了。
磁力地址:Magnet: magnet:?xt=urn:btih:c0e342ae5677582f92c52d8019cc32e1f86f1d83&dn=miqu-2&tr=udp%3A%2F%http://2Ftracker.openbittorrent.com%3A80
下载速度也还可以,每秒14M左右,看来确实是有不少人在下这个模型。
但这个模型一般的GPU肯定是跑不起来,如此大的参数在部署方面个人开发者也负担不起(如果你有一些H100也没问题),估计是给企业、政务公共部门用的。
对于Meta即将发布的模型,就有网友泼冷水。相比OpenAI最新的GPT-4o mini版本,Llama 3.1-70B推理成本提升了3倍,但编码的性能却要差很多。
从性价比、功能来看,Meta的新模型也没什么值得期待的。
还有人甚至在GitHub上看到了上述发布的模型,但很快就拿下来了,估计有一些人可能已经能使用了。
也有人表示,对于这个泄漏事件他认为是真的,因为这是从微软的Azure Github流出来的。
但是这个模型参数较大,对GPU的要求太高了,不如GPT-4o mini性价比高。
虽然模型是免费的,想运行起来还是相当费劲的,没有企业级的算力基础真的无法使用。所以,这对于企业来说是一个不错的好消息。
有人指出即便对Llama 3.1-405B模型进行大幅度优化,量化到5位数,仍然无法适用于消费级GPU,真的是对硬件要求特别高。
如果这份评测数据是真的,那么对于全球多数国家来说都是一个天大的福利。因为这是Meta的Llama 3系列的顶级模型并且是全部开放权重,也就是说人人都能用上免费的AI模型。
但是如果想开发生成式AI应用,也需要强大的AI算力基础、高质量数据以及微调技术。
由于监管机构和各种法案的原因,Meta一直在推迟405B系列模型的发布。那么,本次泄漏是否是Meta特意放出来的呢,因为这是他们的老传统了,去年的Llama模型就干过一次。
好文章,需要你的鼓励
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。