数据中心按照算力可以分为三类:云数据中心、智算中心和超算中心。云数据中心面向众多应用场景和应用层级扩张;智算中心 以AI专用芯片为计算算力底座,以促进AI产业化和智能化为目标,面向AI典型应用场景;超算中心主要支持科学计算和工程计算 ,主要由国家科技部布局建设。
国内数据中心建设较全球起步晚,目前处于云中心深化阶段,向智能算力中心转型,总体处于成长期。

根据Trendforce 测算, 2023 年全球 AI 服务器出货量逾120.8万台,同比增长超过37.7%。这家机构预测, 2024 年全球AI服务器整机出货量将达167.2万台,同比增长38.4%。台积电在Q1法说会上表示,AI需求的增长将以50%的 复合增长率持续至2028年,AI服务器需求增长也有望以较高速度持续至2028年。
2023年,中国人工智能服务器市场规模将达91亿美元, 同比 增长82.5%;智能算力规模预计达到414.1EFLOPS (每秒百亿亿次浮点运算),同比增长59.3%,2022年到2027年, 年复合增长率达到33.9%。
按照用途区分, AI服务器分为训练和推理两大类别。训练用服务器对存储空间、带宽和算力的要求较高, 主要采用8-GPU 设计;推理用服务器对算力、存储和带宽的要求相对较低,取决于业务场景, 可以采用 GPU、NPU、CPU 等不 同芯片承担推理任务,可以采用PCLe接口的AI加速器实现推理任务。
服务器随场景需求经历通用服务器-云服务器-边缘服务器-AI服务器四种模式,AI服务器采用GPU增强其并行计算能力。CPU+GPU是AI服务器的核心部件。机柜级解决方案有望成为未来 AI 服务器出货主流形式之一。
1、半导体行业系列专题:刻蚀—半导体制造核心设备,国产化典范
2、半导体行业系列专题:碳化硅—衬底产能持续扩充,加速国产化机会 3、半导体行业系列专题:直写光刻篇,行业技术升级加速应用渗透 4、半导体行业系列专题:先进封装—先进封装大有可为,上下游产业链受益





































好文章,需要你的鼓励
2025年人工智能在企业中实现突破性应用,从实验阶段转向实用阶段。八位代表性CIO分享核心经验:AI工具快速进化、需保持快节奏实验思维、重视工作流程而非组织架构、数据质量成为新挑战、采用前瞻性指标管理项目、无需等待完美时机、AI既是技术也是社会文化现象、需严格项目管理、变革重在人员而非技术、多智能体架构成未来趋势。
这项由加州伯克利分校等机构联合完成的研究开发了MomaGraph系统,首次实现了机器人对空间关系和功能关系的统一理解。该系统通过强化学习训练,能够同时识别物品位置和操作方法,并具备状态感知能力。在综合测试中达到71.6%准确率,超越同类开源系统11.4%,在真实机器人平台上验证了实用性,为智能家庭机器人的发展奠定重要基础。
日本科技投资巨头软银需要在年底前筹集225亿美元,以履行对AI合作伙伴OpenAI的资金承诺。软银是OpenAI价值5000亿美元Stargate数据中心计划的主要资助者之一。为筹集资金,软银CEO孙正义可能动用多种手段,包括利用其持有的英国芯片设计公司Arm股份作为抵押贷款。软银已清仓英伟达股份为该项目提供资金,目前可通过Arm股份借贷115亿美元,还持有价值110亿美元的T-Mobile股份及270亿美元现金储备。
MIT研究团队提出了突破性的双向归一化流(BiFlow)技术,通过训练独立的逆向模型替代传统的精确逆向过程,解决了归一化流方法架构受限和推理缓慢的核心问题。该方法采用创新的隐藏对齐策略,让逆向模型学习高效的生成路径,在ImageNet数据集上实现了高达697倍的速度提升,同时将图像质量提升到新的技术水平,为生成模型领域带来了重要的思路突破。