这里这张图非常的清晰,借鉴至这篇文章(https://medium.com/squeezebits-team-blog/vllm-vs-tensorrt-llm-1-an-overall-evaluation-88f281bf01c7),主要就是涉及 TTFT、TPOT、Total Inference Time (Latency) 以及图中没有提及的 TPS,这几个大模型的性能指标不只是适用于纯语言大模型 LLM,也适用于多模态大模型 MLLM,所以还是比较通用。
定义:从向模型输入 prompt 开始到模型生成第一个输出 token 所花费的时间。
作用:从业务角度来说是反映模型的初始响应速度,对于实时交互式应用非常重要,较低的TTFT可以提高用户体验,使用户感觉模型响应迅速;从算法推理角度来说,其实主要是在掐大模型推理的 Prefill 时间,更加准确一些的是上图中的 Queueing Time + Prefill Latency 时间和。
定义:从输入 prompt 到模型生成完整输出所消耗的总时间。
作用:总体的响应时间,包含 TTFT 和生成所有 tokens 的时间,当然对于需要快速响应的应用,延时越低越好。
定义:模型在输出阶段 (Decode 阶段) 每个输出 token 的延时。
计算方式:
作用:衡量模型生成阶段自回归蹦出来输出的效率。
定义:模型每秒生成的tokens数量。
计算方式:
作用:直接衡量模型的生成速度 (还是指 decode 阶段)。TPS 越高,表示模型生成文本的速度越快。
下面实操在 transformers 中测量 TTFT、TPOT、Latency 和 TPS 数据的代码。
def measure_performance(model, tokenizer, prompt, max_new_tokens=50):
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs.input_ids.to(model.device)
# 测量TTFT
start_time = time.time()
with torch.no_grad():
outputs = model.generate(input_ids, max_new_tokens=1)
ttft = time.time() - start_time
# 测量TPOT和Latency
start_time = time.time()
with torch.no_grad():
outputs = model.generate(input_ids, max_new_tokens=max_new_tokens)
total_time = time.time() - start_time
tpot = (total_time - ttft) / max_new_tokens
latency = total_time
# 计算TPS
tps = max_new_tokens / latency
return ttft, tpot, latency, tps
prompt = "Once upon a time"
ttft, tpot, latency, tps = measure_performance(model, tokenizer, prompt)
print(f"TTFT: seconds")
print(f"TPOT: seconds")
print(f"Latency: seconds")
print(f"TPS: tokens/second")
如果你稍微心细一些可能会发现上述的代码是在掐 max_new_tokens
的时间,而实际的输出 token 数一定会是 <= max_new_tokens
,这应该很好理解。所以更加准确一些的测试方法是掐实际输出 tokens,实际输出 tokens 可以使用类似 len(tokenizer.encode(response))
的代码进行计算。
所以可以看到大模型这种生成的模式测性能,指标和以前的 CV 小模型测性能差别非常之大。
好文章,需要你的鼓励
IDC数据显示,Arm架构服务器出货量预计2025年将增长70%,但仅占全球总出货量的21.1%,远低于Arm公司年底达到50%市场份额的目标。大规模机架配置系统如英伟达DGX GB200 NVL72等AI处理设备推动了Arm服务器需求。2025年第一季度全球服务器市场达到创纪录的952亿美元,同比增长134.1%。IDC将全年预测上调至3660亿美元,增长44.6%。配备GPU的AI服务器预计增长46.7%,占市场价值近半。
保加利亚研究团队通过创新的双语训练方法,成功让AI模型学会了在非英语环境下使用外部工具。他们开发的TUCAN模型在保加利亚语功能调用任务上实现了显著提升,小模型改进幅度达28.75%。更重要的是,团队开源了完整的方法论,为全球多语言AI工具使用能力的发展提供了可复制的解决方案。
AI正在重塑创业公司的构建方式,这是自云计算出现以来最重大的变革。January Ventures联合创始人Jennifer Neundorfer将在TechCrunch All Stage活动中分享AI时代的新规则,涵盖从创意验证、产品开发到团队架构和市场策略的各个方面。作为专注于B2B早期投资的风投合伙人,她将为各阶段创业者提供关键洞察。
清华大学团队开发了首个能同时理解街景、卫星图、轨迹和地理数据的城市AI系统UrbanLLaVA。通过创新的三阶段训练法和多模态融合技术,该系统在十二项城市任务测试中显著超越现有方法,为智慧城市、导航服务、城市规划等领域带来突破性进展,代码已开源。