下面以经典的 FrozenLake 环境(一个 4x4 的网格世界)为例,使用 Python 和 OpenAI Gym 库来实现 Q-learning 算法。
import numpy as np
import gym
# 创建FrozenLake环境
env = gym.make('FrozenLake-v1', is_slippery=False)
# 初始化参数
num_states = env.observation_space.n
num_actions = env.action_space.n
Q = np.zeros((num_states, num_actions))
num_episodes = 1000
max_steps = 100
alpha = 0.1 # 学习率
gamma = 0.99 # 折扣因子
epsilon = 0.1 # 探索率
for episode in range(num_episodes):
state = env.reset()
for step in range(max_steps):
# 选择动作(ε-贪心策略)
if np.random.uniform(0, 1) < epsilon:
action = env.action_space.sample()
else:
action = np.argmax(Q[state, :])
# 执行动作,获得下一个状态和奖励
next_state, reward, done, info = env.step(action)
# 更新Q函数
best_next_action = np.argmax(Q[next_state, :])
td_target = reward + gamma * Q[next_state, best_next_action]
td_error = td_target - Q[state, action]
Q[state, action] += alpha * td_error
# 状态更新
state = next_state
# 回合结束
if done:
break
print("训练完成后的Q表:")
print(Q)
其中:
gym.make('FrozenLake-v1')
创建环境;[num_states, num_actions]
,用于存储每个状态-动作对的价值;为了平衡探索和利用,ε-贪心策略以 ε 的概率进行探索 (随机选择动作),以 1-ε 的概率进行利用(选择当前最优动作)。学习率决定了新获取的信息在多大程度上覆盖旧的信息,较高的学习率意味着对新信息的依赖性更强。折扣因子用于权衡即时奖励和未来奖励的重要性。接近1的折扣因子表示更加看重未来的奖励。在满足一定条件下,如所有状态-动作对被无限次访问、学习率满足罗宾条件等,Q-learning 算法能够保证收敛到最优 Q 函数。Q-learning 是强化学习中最经典和基础的算法之一,它通过学习状态-动作值函数来指导智能体的决策。通过不断地与环境交互和更新 Q 值,智能体最终能够学到一个最优策略,即在每个状态下选择使得长期累积奖励最大的动作。
好文章,需要你的鼓励
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
Coursera在2025年连接大会上宣布多项AI功能更新。10月将推出角色扮演功能,通过AI人物帮助学生练习面试技巧并获得实时反馈。新增AI评分系统可即时批改代码、论文和视频作业。同时引入完整性检查和监考系统,通过锁定浏览器和真实性验证打击作弊行为,据称可减少95%的不当行为。此外,AI课程构建器将扩展至所有合作伙伴,帮助教育者快速设计课程。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。