“大模型的应用从‘上新品’逐渐进入‘强应用’阶段,更好的通用人工智能仍在路上。”10 月 29 日,蚂蚁数科CTO王维在香港金融科技周2024 分享时指出。
两年前,大语言模型(LLM)的出现,引发了全球科技从业者的普遍关注和行业热潮。ChatGPT 月活用户数以史上最快速度达到 1 亿,AI 行业迎来“ChatGPT时刻”。经过一段时间的狂奔,LLM性能阶段性趋于饱和,大模型底层推动力逐渐收敛到少数拥有核心数据及算力资源的公司,行业注意力也更多转到了以Agent为代表的行业应用侧。
如何解放 LLM 应用的局限性。王维强调,高质量的行业数据和专业工具是 AI 继续发展的关键壁垒和门槛,行业应用需要系统性地解决专业严谨和安全可信等问题。蚂蚁数科“蚁天鉴”产品,集大模型安全测评与防御为一体,让大模型在生产和使用过程中更安全、可控、可靠。
他认为,高质量数据可以更好地模拟客观世界,提升模型的准确性和稳定性。过去十年,伴随着AI发展的范式转移,对数据的要求也在持续改变。机器学习从“以模型为中心”转向“以数据为中心”。在当下的 LLM时代,行业应用要做到安全可信,其核心是如何结合专业人工+AI算法的高效标注,产生高质量的标注数据。
而面向未来的AGI时代,随着互联网公开数据逐步耗尽,以及GPT-o1带来的强化学习训练新范式,都预示着数据合成的重要性进一步提升。王维指出,如何通过仿真引擎、自博弈(self-play)强化学习的方式,合成出更多互联网所不覆盖的高质量、高价值领域数据,将是到达AGI时代的关键。
他也提醒道,AI 是把双刃剑,AIGC滥用所带来的风险需要系统性应对。不久前,“AI 教父” 杰弗里·辛顿(Geoffrey E. Hinton)在采访中再次强调了其对AI安全问题的强烈担忧。他与另外两位图灵奖得主约书亚·本吉奥(Yoshua Bengio)、姚期智及来自世界各地的几十位科学家共同签署了一封公开信——“AI 安全国际对话威尼斯共识”,呼吁为推动人工智能的发展制定更好的保障措施。
他们在公开信中警告道,“随着人工智能的快速发展,这些‘灾难性的结果’随时可能发生。”究其问题根源,在于 AIGC 的滥用不仅会产生虚假信息和网络钓鱼攻击,还可能引发全球性的诈骗活动。其中,值得关注的一大风险来源便是Deepfake, 即基于深度学习算法,从大量的视频和图像数据中学习,伪造出逼真的面部动画和语音。
王维介绍,蚂蚁数科旗下身份安全品牌 ZOLOZ 为此专门研发了综合防控产品 ZOLOZ Deeper,以应对在开户、登录、支付等各种场景的深度伪造风险。在服务印尼某头部银行后,产品上线一个月时间内实现了 Deepfake 风险“0 漏过”。
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
韩国汉阳大学联合高通AI研究院开发出InfiniPot-V框架,解决了移动设备处理长视频时的内存限制问题。该技术通过时间冗余消除和语义重要性保留两种策略,将存储需求压缩至原来的12%,同时保持高准确性,让手机和AR眼镜也能实时理解超长视频内容。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。