“大模型的应用从‘上新品’逐渐进入‘强应用’阶段,更好的通用人工智能仍在路上。”10 月 29 日,蚂蚁数科CTO王维在香港金融科技周2024 分享时指出。
两年前,大语言模型(LLM)的出现,引发了全球科技从业者的普遍关注和行业热潮。ChatGPT 月活用户数以史上最快速度达到 1 亿,AI 行业迎来“ChatGPT时刻”。经过一段时间的狂奔,LLM性能阶段性趋于饱和,大模型底层推动力逐渐收敛到少数拥有核心数据及算力资源的公司,行业注意力也更多转到了以Agent为代表的行业应用侧。

如何解放 LLM 应用的局限性。王维强调,高质量的行业数据和专业工具是 AI 继续发展的关键壁垒和门槛,行业应用需要系统性地解决专业严谨和安全可信等问题。蚂蚁数科“蚁天鉴”产品,集大模型安全测评与防御为一体,让大模型在生产和使用过程中更安全、可控、可靠。
他认为,高质量数据可以更好地模拟客观世界,提升模型的准确性和稳定性。过去十年,伴随着AI发展的范式转移,对数据的要求也在持续改变。机器学习从“以模型为中心”转向“以数据为中心”。在当下的 LLM时代,行业应用要做到安全可信,其核心是如何结合专业人工+AI算法的高效标注,产生高质量的标注数据。
而面向未来的AGI时代,随着互联网公开数据逐步耗尽,以及GPT-o1带来的强化学习训练新范式,都预示着数据合成的重要性进一步提升。王维指出,如何通过仿真引擎、自博弈(self-play)强化学习的方式,合成出更多互联网所不覆盖的高质量、高价值领域数据,将是到达AGI时代的关键。

他也提醒道,AI 是把双刃剑,AIGC滥用所带来的风险需要系统性应对。不久前,“AI 教父” 杰弗里·辛顿(Geoffrey E. Hinton)在采访中再次强调了其对AI安全问题的强烈担忧。他与另外两位图灵奖得主约书亚·本吉奥(Yoshua Bengio)、姚期智及来自世界各地的几十位科学家共同签署了一封公开信——“AI 安全国际对话威尼斯共识”,呼吁为推动人工智能的发展制定更好的保障措施。
他们在公开信中警告道,“随着人工智能的快速发展,这些‘灾难性的结果’随时可能发生。”究其问题根源,在于 AIGC 的滥用不仅会产生虚假信息和网络钓鱼攻击,还可能引发全球性的诈骗活动。其中,值得关注的一大风险来源便是Deepfake, 即基于深度学习算法,从大量的视频和图像数据中学习,伪造出逼真的面部动画和语音。
王维介绍,蚂蚁数科旗下身份安全品牌 ZOLOZ 为此专门研发了综合防控产品 ZOLOZ Deeper,以应对在开户、登录、支付等各种场景的深度伪造风险。在服务印尼某头部银行后,产品上线一个月时间内实现了 Deepfake 风险“0 漏过”。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
NVIDIA研究团队开发的OmniVinci是一个突破性的多模态AI模型,能够同时理解视觉、听觉和文本信息。该模型仅使用0.2万亿训练样本就超越了使用1.2万亿样本的现有模型,在多模态理解测试中领先19.05分。OmniVinci采用三项核心技术实现感官信息协同,并在机器人导航、医疗诊断、体育分析等多个实际应用场景中展现出专业级能力,代表着AI向真正智能化发展的重要进步。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
Salesforce研究团队发布BLIP3o-NEXT,这是一个创新的图像生成模型,采用自回归+扩散的双重架构设计。该模型首次成功将强化学习应用于图像生成,在多物体组合和文字渲染方面表现优异。尽管只有30亿参数,但在GenEval测试中获得0.91高分,超越多个大型竞争对手。研究团队承诺完全开源所有技术细节。