“大模型的应用从‘上新品’逐渐进入‘强应用’阶段,更好的通用人工智能仍在路上。”10 月 29 日,蚂蚁数科CTO王维在香港金融科技周2024 分享时指出。
两年前,大语言模型(LLM)的出现,引发了全球科技从业者的普遍关注和行业热潮。ChatGPT 月活用户数以史上最快速度达到 1 亿,AI 行业迎来“ChatGPT时刻”。经过一段时间的狂奔,LLM性能阶段性趋于饱和,大模型底层推动力逐渐收敛到少数拥有核心数据及算力资源的公司,行业注意力也更多转到了以Agent为代表的行业应用侧。

如何解放 LLM 应用的局限性。王维强调,高质量的行业数据和专业工具是 AI 继续发展的关键壁垒和门槛,行业应用需要系统性地解决专业严谨和安全可信等问题。蚂蚁数科“蚁天鉴”产品,集大模型安全测评与防御为一体,让大模型在生产和使用过程中更安全、可控、可靠。
他认为,高质量数据可以更好地模拟客观世界,提升模型的准确性和稳定性。过去十年,伴随着AI发展的范式转移,对数据的要求也在持续改变。机器学习从“以模型为中心”转向“以数据为中心”。在当下的 LLM时代,行业应用要做到安全可信,其核心是如何结合专业人工+AI算法的高效标注,产生高质量的标注数据。
而面向未来的AGI时代,随着互联网公开数据逐步耗尽,以及GPT-o1带来的强化学习训练新范式,都预示着数据合成的重要性进一步提升。王维指出,如何通过仿真引擎、自博弈(self-play)强化学习的方式,合成出更多互联网所不覆盖的高质量、高价值领域数据,将是到达AGI时代的关键。

他也提醒道,AI 是把双刃剑,AIGC滥用所带来的风险需要系统性应对。不久前,“AI 教父” 杰弗里·辛顿(Geoffrey E. Hinton)在采访中再次强调了其对AI安全问题的强烈担忧。他与另外两位图灵奖得主约书亚·本吉奥(Yoshua Bengio)、姚期智及来自世界各地的几十位科学家共同签署了一封公开信——“AI 安全国际对话威尼斯共识”,呼吁为推动人工智能的发展制定更好的保障措施。
他们在公开信中警告道,“随着人工智能的快速发展,这些‘灾难性的结果’随时可能发生。”究其问题根源,在于 AIGC 的滥用不仅会产生虚假信息和网络钓鱼攻击,还可能引发全球性的诈骗活动。其中,值得关注的一大风险来源便是Deepfake, 即基于深度学习算法,从大量的视频和图像数据中学习,伪造出逼真的面部动画和语音。
王维介绍,蚂蚁数科旗下身份安全品牌 ZOLOZ 为此专门研发了综合防控产品 ZOLOZ Deeper,以应对在开户、登录、支付等各种场景的深度伪造风险。在服务印尼某头部银行后,产品上线一个月时间内实现了 Deepfake 风险“0 漏过”。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。