在大规模模型训练的领域中,构建高性能GPU服务器的基础架构通常依托于由单个服务器搭载8块GPU单元所组成的集群系统。这些服务器内部配置了如A100、A800、H100或H800等高性能GPU型号,并且随着技术发展,未来可能还会整合 L40S等新型号GPU。下图展示了一个典型的配备了8块A100 GPU的服务器内部GPU计算硬件连接拓扑结构示意图。
在高性能GPU计算的领域内,关键组件如CPU、内存模块、NVMe存储设备、GPU以及网络适配器等通过PCIe(外设部件互连标准)总线或专门设计的PCIe交换机芯片实现高效顺畅的连接。历经五代技术革新,目前最新的Gen5版本确保了设备间极为高效的互连性能。这一持续演进充分彰显了PCIe在构建高性能计算系统中的核心地位,显著提升了数据传输速度,并有力地促进了现代计算集群中各互联设备间的无缝协同工作。
NVLink是英伟达(NVIDIA)开发并推出的一种总线及其通信协议。NVLink采用点对点结构、串列传输,用于中央处理器(CPU)与图形处理器(GPU)之间的连接,也可用于多个图形处理器之间的相互连接。与PCI Express不同,一个设备可以包含多个NVLink,并且设备之间采用网格网络而非中心集线器方式进行通信。该协议于2014年3月首次发布,采用专有的高速信号互连技术(NVHS)。
该技术支持同一节点上GPU之间的全互联,并经过多代演进,提高了高性能计算应用中的双向带宽性能。
NVLink技术在高性能GPU服务器中的演进如下图所示:
用途:主要用于加速GPU之间的数据传输,提升协同计算性能。
连接方式:基于6通道连接。
性能提升:提供更高的数据传输速率,改善GPU间通信效率。
总带宽:达到双向总带宽600 GB/s。
总带宽:进一步增加至双向总带宽900 GB/s。
下图展示的是浪潮NF5488A5 NVIDIA HGX A100 8 GPU组装侧视图。在该图中,我们可以清楚地看到,在右侧六个大型散热器下方隐蔽着一块NVSwitch芯片,它紧密围绕并服务于周围的八片A100 GPU,以确保GPU间的高效数据传输。
NVLink交换机是一种由NVIDIA专为在分布式计算环境中的不同主机间实现GPU设备间高性能通信而设计制造的独立交换设备。不同于集成于单个主机内部GPU模块上的NVSwitch,NVLink交换机旨在解决跨主机连接问题。可能有人会混淆NVLink交换机和NVSwitch的概念,但实际上早期提及的“NVLink交换机”是指安装在GPU模块上的切换芯片。直至2022年,NVIDIA将此芯片技术发展为一款独立型交换机产品,并正式命名为NVLink交换机。
传统上,GPU内存与常见的DDR(双倍数据速率)内存相似,通过物理插槽插入主板并通过PCIe接口与CPU或GPU进行连接。然而,这种配置在PCIe总线中造成了带宽瓶颈,其中Gen4版本提供64GB/s的带宽,Gen5版本则将其提升至128GB/s。
为了突破这一限制,包括但不限于NVIDIA在内的多家GPU制造商采取了创新手段,即将多个DDR芯片堆叠整合,形成了所谓的高带宽内存(HBM)。例如,在探讨H100时所展现的设计,GPU直接与其搭载的HBM内存相连,无需再经过PCIe交换芯片,从而极大地提高了数据传输速度,理论上可实现显著的数量级性能提升。因此,“高带宽内存”(HBM)这一术语精准地描述了这种先进的内存架构。
在大规模GPU计算训练领域,系统性能与数据传输速度密切相关,涉及到的关键通道包括PCIe带宽、内存带宽、NVLink带宽、HBM带宽以及网络带宽等。在衡量这些不同的数据传输速率时,需注意使用的带宽单位有所不同。
在网络通信场景下,数据速率通常以每秒比特数(bit/s)表示,且为了区分发送(TX)和接收(RX),常采用单向传输速率来衡量。而在诸如PCIe、内存、NVLink及HBM等其他硬件组件中,带宽指标则通常使用每秒字节数(Byte/s)或每秒事务数(T/s)来衡量,并且这些测量值一般代表双向总的带宽容量,涵盖了上行和下行两个方向的数据流。
因此,在比较评估不同组件之间的带宽时,准确识别并转换相应的带宽单位至关重要,这有助于我们全面理解影响大规模GPU训练性能的数据传输能力。
文章来源:
好文章,需要你的鼓励
本文探讨了AI发展的未来趋势,详细分析了六条有望实现通用人工智能(AGI)的技术路径。随着生成式AI和大语言模型面临发展瓶颈,业界开始将目光转向其他AI发展方向。这六条路径包括神经符号AI、神经形态AI、具身AI、多智能体AI、以人为中心的AI和量子AI。每种路径都有其独特优势和挑战,可能单独或组合推动AI进入下一个发展阶段,最终实现与人类智能相当的AGI系统。
约翰霍普金斯大学研究团队发现VAR模型的马尔可夫变体本质上是离散扩散模型,提出SRDD方法。通过应用扩散模型技术如分类器自由引导、令牌重采样等,SRDD相比VAR在图像质量上提升15-20%,同时具备更好的零样本性能。这项研究架起了自回归模型与扩散模型的理论桥梁,为视觉生成技术发展开启新方向。
培生公司第三季度销售增长加速,并预示年底表现更强劲,但其AI应用可能是更重要的发展。该公司虚拟学习部门销售额激增17%,学生注册人数攀升。培生运营的在线学校将AI工具嵌入课程材料中,公司表示有越来越多证据显示这些工具帮助学生取得更好成绩。公司推出了AI学习内容组合,包括AI素养模块和融合人工导师与AI学习工具的视频平台。
微软亚洲研究院推出CAD-Tokenizer技术,首次实现AI通过自然语言指令进行3D模型设计和编辑的统一处理。该技术通过专门的CAD分词器和原语级理解机制,让AI能像设计师一样理解设计逻辑,大幅提升了设计精度和效率,有望推动工业设计的民主化进程。