随着AI技术的飞速发展,在工业和家庭领域中构建能够精确操作且仅需少量任务演示的通用实体机器人成为可能。例如,在工业制造中,人们希望实体机器人能够通过几次演示就学会高精度任务,如拧螺丝、搬货物等。
之前的PerAct、RVT等通用模型,在训练方面有一定的优势但还是有不少局限性。PerAct采用多任务模型,通过预测下一关键帧姿态来进行3D操作,但它使用的基于体素的场景表示限制了其扩展性。
RVT虽然解决了PerAct的一些功能缺陷,但在处理需要高精度的任务时仍存在困难。所以,英伟达的研究人员在RVT基础之上研发出了第二代,训练效率比第一代快6倍,推理效率快2倍,仅10次示范学习就能执行各种高精度任务。

在架构方面与RVT相比,RVT – 2进行了大幅度改进并引入了多阶段推理管道。在处理对象非常小且需要非常精确的抓手姿态的任务时,例如,在孔中插入销钉,之前RVT使用的固定视图可能无法完成。
RVT - 2采用了多阶段设计,在第一阶段使用固定视图预测感兴趣区域,然后在该区域进行放大并重新渲染图像,使用放大后的特写图像进行精确的抓手姿态预测。
RVT – 2还采用了凸上采样技术。RVT基于ViT,在预测热图时,会将图像tokens特征上采样到图像分辨率,这一过程内存消耗大。

RVT - 2去除了特征上采样,直接从tokens分辨率的特征预测热图形状,使用凸上采样层,通过学习到的凸组合来进行预测,不仅节省了内存,还不会牺牲性能。
此外,RVT - 2对网络参数进行了合理化调整。RVT中一些网络参数,如虚拟图像大小和补丁大小,可能不是GPU友好的。R
VT - 2采用了类似于ViT的参数,如224的图像大小和14的补丁大小,这不仅使神经网络更适合GPU,还减少了多视图变压器内部tokens的总数,进一步提高了效率。
在旋转预测方面,RVT和PerAct使用全局视觉特征来预测末端执行器旋转,但当存在多个有效末端执行器位置且旋转依赖于位置时会出现问题。RVT - 2使用从末端执行器位置的特征图中汇集的局部特征进行旋转预测,实现了位置相关的旋转预测。
RVT渲染场景点云时使用了五个虚拟相机,分别放置在正交位置。但在RVT - 2的多阶段模型中,研究发现仅使用三个视图就足够了,且不会牺牲性能。
这是因为RVT - 2在最终预测中使用了放大后的视图,减少虚拟视图数量可以减少渲染器需要渲染的图像数量和多视图变压器需要处理的令牌数量,从而提高了训练和推理效率。

为了评估RVT - 2的性能,研究人员在模拟和现实世界中进行了综合实验。在模拟实验中,使用了RLBench中的18个任务进行测试,包括推按钮、放置物品和需要高精度的插销等任务。每个任务有2到60个变化,如处理不同颜色或位置的对象。
实验结果表明,RVT - 2在训练时间和性能上显著优于之前的模型。在训练时间方面,RVT - 2在相同计算资源下比RVT训练效率快6倍,推理效率快2倍。
在现实世界实验中,除了RVT中使用的堆叠方块、按压消毒器、将标记物放入杯子/碗中、将物体放入抽屉、将物体放入架子5个任务外,还增加了三个来自IndustRealKit的高精度任务,拾取并插入16mm销钉、拾取并插入8mm销钉、拾取并插入插头。

实验结果显示,RVT - 2在5个来自RVT的任务中,比RVT的性能相对提高了12.5%。在所有3个新的高精度任务上,RVT - 2的平均成功率为53.3%,而RVT为33.3%。
论文地址:https://arxiv.org/abs/2406.08545
好文章,需要你的鼓励
埃森哲投资AI零售平台Profitmind,该平台通过智能代理自动化定价决策、库存管理和规划。研究显示AI驱动了2025年假日购物季20%的消费,约2620亿美元。部署AI代理的企业假日销售同比增长6.2%,而未部署的仅增长3.9%。Profitmind实时监控竞争对手价格和营销策略,并可创建生成式引擎优化产品文案。
上海AI实验室联合团队开发RoboVIP系统,通过视觉身份提示技术解决机器人训练数据稀缺问题。该系统能生成多视角、时间连贯的机器人操作视频,利用夹爪状态信号精确识别交互物体,构建百万级视觉身份数据库。实验显示,RoboVIP显著提升机器人在复杂环境中的操作成功率,为机器人智能化发展提供重要技术突破。
日立公司在CES 2026技术展上宣布了重新定义人工智能未来的"里程碑式"战略,将AI直接应用于关键物理基础设施。该公司与英伟达、谷歌云建立重要合作伙伴关系,并扩展其数字资产管理平台HMAX,旨在将AI引入社会基础设施,变革能源、交通和工业基础设施领域。日立强调其独特地位,能够将AI集成到直接影响社会的系统中,解决可持续发展、安全和效率方面的紧迫挑战。
英伟达研究团队提出GDPO方法,解决AI多目标训练中的"奖励信号坍缩"问题。该方法通过分别评估各技能再综合考量,避免了传统GRPO方法简单相加导致的信息丢失。在工具调用、数学推理、代码编程三大场景测试中,GDPO均显著优于传统方法,准确率提升最高达6.3%,且训练过程更稳定。该技术已开源并支持主流AI框架。