中国AI汽车发展进展如何?
中国汽车工业正在利用AI脱颖而出,凭借可颠覆驾驶体验的智能功能牢牢吸引消费者。
定义何为AI汽车对于管理消费者期望和确保ADAS技术的安全发展至关重要
ADAS系统中向VLM和VLA的转变,预计将彻底改变辅助驾驶体验,使车辆在道路上变得更加智能和安全。
中国车企的全球扩张,这需要构建战略合作伙伴关系进行本地化测试,以此在监管环境各异的国际市场开疆拓土。
AI的可持续发展面临投资方案、组织变革、合作伙伴关系、监管动态以及未来的不确定性等一系列严峻挑战,车企必积极应对这些问题。
Omdia端侧AI处理器最新预测,到2025年,轻型汽车中AI处理器的全球销售收入预计将达54亿美元,同比增长17.6%。中国的车企——尤其是电动汽车颠覆者和中国新能源汽车挑战者——正积极部署AI和机器学习模型,旨在实现ADAS(自动数据采集系统)和智能座舱的创新功能。仔细观察不难发现,从传统汽车厂商到新兴电动汽车厂商,各车企在利用AI构建汽车功能以及推广产品时的偏好各异。这说明其在利用技术开发独特功能和培训目标受众方面采用了不同策略。虽然AI在整个汽车价值链中均有用武之地,但本报告深入探究了AI在中国汽车市场日益增长的重要性,强调了AI为终端消费者提供的价值。

AI车辆定义:行业发展的关键一步
随着AI技术的飞速进展,汽车制造商正面临从“传统”汽车公司向技术驱动型企业转型的巨大挑战。中国汽车行业已经认识到,AI是推动消费者受益的重要工具,越来越多的宣传材料开始使用“智能”、“动态”和“自适应”等词汇,以避免“AI疲劳”并突出用户体验。
AI助力安全与效率提升
中国消费者对车辆AI功能的需求与日俱增,但与AI电脑或智能手机不同,车载AI更多地发挥着幕后作用,集中在提高安全性和效率上。目前,消费者需要更清楚地理解汽车AI的能力和局限性,避免误解L2+ ADAS为完全自动驾驶,这种误解可能导致安全隐患。

定义AI车辆,推动行业标准化
随着AI技术在下一代汽车功能中的重要作用日益增加,定义AI车辆变得尤为重要。行业间达成共识的AI车辆定义将促进合作与标准化,推动AI工具和功能的更快发展与广泛应用。这不仅有助于测试、开发和部署AI车辆,还能为行业提供一个更清晰的责任框架。
中国汽车行业的AI发展现状
目前,中国正处于“适应性AI”阶段,汽车AI系统具备一定的学习和适应能力,能够根据驾驶行为和环境因素进行自我调整。L2+ ADAS功能正在逐步实现自学习,配合频繁更新,能有效应对复杂的驾驶场景,并为消费者带来切实的安全和便利。

AI多模态模型推动ADAS进化
随着视觉语言模型(VLM)和视觉语言动作模型(VLA)技术的兴起,ADAS正从被动辅助系统向主动驾驶助手转型。VLMs结合图像和文本,帮助ADAS系统增强基于图像的决策能力,而VLA模型,能将图像信息与车型运动轨迹结合,进一步提升辅助驾驶决策上限能力。这些先进技术正推动汽车行业向完全自动驾驶决策系统迈进,未来的汽车将更加智能、安全。
AI技术正在深刻改变汽车行业的发展方向,从安全性提升到自动化决策,AI正为智能驾驶铺平道路。通过清晰的AI车辆定义和标准化,行业将更有效地合作,推动创新加速,迎接智能化出行新时代。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
NVIDIA研究团队开发的OmniVinci是一个突破性的多模态AI模型,能够同时理解视觉、听觉和文本信息。该模型仅使用0.2万亿训练样本就超越了使用1.2万亿样本的现有模型,在多模态理解测试中领先19.05分。OmniVinci采用三项核心技术实现感官信息协同,并在机器人导航、医疗诊断、体育分析等多个实际应用场景中展现出专业级能力,代表着AI向真正智能化发展的重要进步。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
Salesforce研究团队发布BLIP3o-NEXT,这是一个创新的图像生成模型,采用自回归+扩散的双重架构设计。该模型首次成功将强化学习应用于图像生成,在多物体组合和文字渲染方面表现优异。尽管只有30亿参数,但在GenEval测试中获得0.91高分,超越多个大型竞争对手。研究团队承诺完全开源所有技术细节。