数据中心行业在 2025 年可能面临动荡,因为 AI 的增长威胁到可持续发展承诺,同时新项目可能会面临越来越多的公众反对。
此外,对服务器机房供电和配电方式的全面改革似乎越来越有必要。
这些发现来自 Uptime Institute 的最新报告,该报告基于其对塑造行业的最新发展和挑战的研究,对未来一年进行了预测。
所有五个预测都与支持预期的 AI 和相关云服务蓬勃发展所需的数据中心需求巨大增长有关。
Uptime 的第一个预测是,由于服务器机房的资源使用和温室气体 (GHG) 排放导致对新建项目的本地反对声音越来越大,而政府更关注获取经济效益,数据中心将变得更具争议性。
The Reg 已经广泛报道了 AI 导致的数据中心能源消耗的严重警告,分析机构 Gartner 最近表示,这可能在未来两年内增长 160%。数据中心对水资源和土地的使用是另一个争议点,再加上它们依赖税收优惠且创造的本地就业机会有限,这将使其面临当地居民和环保组织越来越多的反对。
Uptime 强调,许多政府已经设定了在特定日期实现温室气体净零排放的目标,但警告说,由于 AI 热潮可能会考验电力供应,这些承诺几乎肯定无法实现。
该报告指出,许多政府似乎相信 AI 带来的经济效益超过其他顾虑。英国就是一个典型的例子,本周发布了 AI 机遇行动计划,并承诺放宽规划规则以优先考虑数据中心建设。
Uptime 还预测,由于数据中心运营商的需求庞大且不断增长,他们将不得不积极参与能源电网管理。它预见到,如果不与公用事业公司密切合作,运营商在购买或发电方面将面临困难,并怀疑服务器机房可能需要提供或储存电力,并在需要时愿意减少负载。
例如,Microsoft 在其都柏林园区部署了"具有电网交互功能的 UPS 技术",允许安装用于备用电源的能源储存系统在需要时将能源反馈给电网。这旨在帮助平滑由于可再生能源的可变性而导致的电力供应变化。
这家云计算和软件公司还在同一园区建造私人燃气发电厂,以便其基础设施能够在用电高峰期继续运行。Uptime 表示,随着运营商试图通过向本地电网输送过剩电力来抵消部分投资,这一趋势可能会得到更广泛的采用。
报告的下一个预测是:由于 AI 基础设施的能源需求不断增长,数据中心内部将需要彻底改造。AI 训练已经将机架密度推向通常在超级计算设施中看到的水平,报告称围绕 Nvidia H 系列 GPU 构建的设备每机架达到 40 kW。
该报告警告说,提高机架功率带来了几个挑战,包括配电基础设施(如配电盘、UPS 系统、配电板和电池)占用的空间。如果不改变电力架构,许多数据中心可能会变成围绕相对较小的 IT 机房建造的发电厂。
解决这个问题需要进行一些改变,如对 IT 空间进行中压(超过 1 kV)配电和采用新型配电拓扑。然而,这种改造需要时间来展开,2025 年可能是实现这一目标的关键投资年。
另一个预测是,AI 模型将在云端进行训练,企业将使用公共云资源,而不是采购和部署自己的专用 GPU 服务器集群。
该报告的最后一个预测是,数据中心运营商将开始更多考虑替代 Nvidia 耗能巨大的 GPU 进行 AI 处理。Uptime 称,有迹象表明 AI 硬件市场将在 2025 年变得更加多样化。
Uptime 总结说,2025 年将考验数据中心运营商在应对 AI 带来的机遇和不确定性方面的能力。他们需要在此基础上保持现有的服务水平协议,实现可持续发展目标,并满足财务目标。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。