在整个 AI 领域,各个团队正通过改变模型运作方式来释放新的功能。这其中包括输入压缩、改变大语言模型的内存需求、重新定义上下文窗口,以及创建注意力机制来帮助神经网络聚焦于所需之处。
例如,有一种叫做"量化"的过程,通过使用不同的输入类型来帮助模型获得更好的整体效果——这在某种程度上类似于早期主要是监督系统的机器学习程序中的维度概念。
从 MIT 专家的最新研究中我们可以看到,4 位量化过程在生成式 AI 扩散模型中非常有用。具体来说,Muyang Li 及其团队开发了一个用于扩散的 "SVDquant" 4 位量化系统,该系统比传统模型运行速度快三倍,同时还能提供更好的图像质量和兼容性。
扩散模型如何工作
在深入探讨研究团队在量化系统方面的发现之前,让我们先了解扩散模型的一般工作原理。
我在 MIT CSAIL 实验室的同事 Daniela Rus 曾对此做出很好的解释。她指出,扩散模型会获取现有图像,将其分解,然后基于先前的训练输入数据重建出新图像。因此,最终会创建出一张全新的图像,但它包含了用户在输入提示时所期望的所有特征。提示越详细,输出就越精确。如果你使用过这些系统,就会知道你还可以通过后续提示来调整或修改图像,使其更符合你的期望。
你可以将其类比为一位技艺精湛的画家根据要求作画。你告诉画家要画什么,他们就会运用自己的知识库来描绘特定事物的样子。虽然图像是原创和独特的,但它是基于艺术家所学习的知识。同样,扩散模型的结果也是基于它所学习的内容。
提升扩散效率
通过将 16 位模型转换为 4 位模型,研究人员声称可以节省约 3.5 倍的内存,并将延迟减少 8.7 倍。
一些已发表的资源展示了如何在较少资源的情况下实现高保真度和良好的构图。
Li 在系统说明中写道:"量化为减小模型大小和加速计算提供了强有力的方法。通过将参数和激活压缩为低位表示,它大大降低了内存和处理需求。随着摩尔定律放缓,硬件供应商正在转向低精度推理。NVIDIA Blackwell 中的 4 位浮点 (FP4) 精度就是这一趋势的典范。"
这是一个很好的例证,因为 Nvidia Blackwell 几乎无所不能。查看一些使用最先进 GPU 和现代硬件的企业程序,你会经常听到 "Blackwell" 这个名字。
因此,正如作者指出的,硬件供应商正在转向低精度推理,这是一个极好的例子。
量化的挑战
为了克服 4 位量化模型的一些限制,专家们建议了一些最佳实践。例如,权重和激活必须匹配,异常值必须重新分配,必须达到某种平衡。
但是一旦实现了这些,你就能获得那些将在未来转化为大规模企业应用的节省。
期待这些创新很快就会在你所在的商业领域中得到应用。
好文章,需要你的鼓励
谷歌CEO皮查伊在AI竞赛低谷期坚持"信号降噪"原则,顶住压力加倍投入,最终带领谷歌凭借Gemini系列重夺领先。他坚信AI将超越火与电的革命性影响,通过递归自我改进极大降低创意实现门槛,这场"创造力民主化"浪潮或将解锁80亿人的认知潜能。
浙江大学和吉利汽车研究院联合团队提出的FreeTimeGS是一种创新的动态3D场景重建方法。不同于传统方法,它允许高斯基元在任意时空位置自由出现,并赋予每个基元运动功能,使其能够随时间移动到相邻区域。研究通过4D正则化策略解决了高不透明度基元阻碍优化的问题。在多个数据集测试中,该方法在渲染质量和速度上均大幅超越现有技术,特别是在处理复杂动态场景时,使用单个RTX 4090 GPU能以467 FPS的速度实现1080p实时渲染,为电影制作、游戏和虚拟现实等应用提供了新可能。
李飞飞的World Labs以"空间智能"重新定义AI,专注3D物理世界理解,4个月估值飙至10亿美元,获科技巨头集体押注。她揭示语言无法编码物理世界,而DNA双螺旋等突破性发现都源于三维空间的深度认知。
这篇研究介绍了"对角线批处理"技术,该技术解决了循环记忆Transformer模型在处理长文本时的并行计算瓶颈。通过重新编排计算顺序,研究团队实现了在不破坏依赖关系的情况下进行并行计算,使LLaMA-1B模型处理长文本的速度提升3.3倍,同时内存使用减少167.1倍。这种纯运行时优化不需要重新训练模型,为实际应用中的长文本处理提供了高效解决方案。