在整个 AI 领域,各个团队正通过改变模型运作方式来释放新的功能。这其中包括输入压缩、改变大语言模型的内存需求、重新定义上下文窗口,以及创建注意力机制来帮助神经网络聚焦于所需之处。
例如,有一种叫做"量化"的过程,通过使用不同的输入类型来帮助模型获得更好的整体效果——这在某种程度上类似于早期主要是监督系统的机器学习程序中的维度概念。
从 MIT 专家的最新研究中我们可以看到,4 位量化过程在生成式 AI 扩散模型中非常有用。具体来说,Muyang Li 及其团队开发了一个用于扩散的 "SVDquant" 4 位量化系统,该系统比传统模型运行速度快三倍,同时还能提供更好的图像质量和兼容性。
扩散模型如何工作
在深入探讨研究团队在量化系统方面的发现之前,让我们先了解扩散模型的一般工作原理。
我在 MIT CSAIL 实验室的同事 Daniela Rus 曾对此做出很好的解释。她指出,扩散模型会获取现有图像,将其分解,然后基于先前的训练输入数据重建出新图像。因此,最终会创建出一张全新的图像,但它包含了用户在输入提示时所期望的所有特征。提示越详细,输出就越精确。如果你使用过这些系统,就会知道你还可以通过后续提示来调整或修改图像,使其更符合你的期望。
你可以将其类比为一位技艺精湛的画家根据要求作画。你告诉画家要画什么,他们就会运用自己的知识库来描绘特定事物的样子。虽然图像是原创和独特的,但它是基于艺术家所学习的知识。同样,扩散模型的结果也是基于它所学习的内容。
提升扩散效率
通过将 16 位模型转换为 4 位模型,研究人员声称可以节省约 3.5 倍的内存,并将延迟减少 8.7 倍。
一些已发表的资源展示了如何在较少资源的情况下实现高保真度和良好的构图。
Li 在系统说明中写道:"量化为减小模型大小和加速计算提供了强有力的方法。通过将参数和激活压缩为低位表示,它大大降低了内存和处理需求。随着摩尔定律放缓,硬件供应商正在转向低精度推理。NVIDIA Blackwell 中的 4 位浮点 (FP4) 精度就是这一趋势的典范。"
这是一个很好的例证,因为 Nvidia Blackwell 几乎无所不能。查看一些使用最先进 GPU 和现代硬件的企业程序,你会经常听到 "Blackwell" 这个名字。
因此,正如作者指出的,硬件供应商正在转向低精度推理,这是一个极好的例子。
量化的挑战
为了克服 4 位量化模型的一些限制,专家们建议了一些最佳实践。例如,权重和激活必须匹配,异常值必须重新分配,必须达到某种平衡。
但是一旦实现了这些,你就能获得那些将在未来转化为大规模企业应用的节省。
期待这些创新很快就会在你所在的商业领域中得到应用。
好文章,需要你的鼓励
思科推出8223路由系统和Silicon One P200芯片,用于满足企业日益增长的AI工作负载需求。该系统提供51.2 Tbps以太网固定路由器,P200芯片实现超过3艾比特每秒的互连带宽规模。新设备采用深缓冲设计,相比前代产品节能65%,支持跨数据中心AI集群分布式部署,解决物理空间和电力容量限制问题。
华中科技大学联合华为和上海交大研究团队开发出革命性3D人体重建系统Snap-Snap,仅需正面和背面两张照片即可在190毫秒内生成完整3D人像。该技术突破了传统方法对昂贵设备和复杂人体先验模型的依赖,通过智能几何推理和侧面增强算法实现高质量重建,为虚拟现实、游戏开发等领域的大众化应用奠定基础。
智能AI代理正成为软件开发的新宠,企业高管希望通过AI代理提升效率。尽管开发者对AI生成代码的质量存在担忧,但其潜在价值巨大。调查显示三分之二企业正在或计划使用多个AI代理进行软件测试,72%认为到2027年智能AI可实现自主测试。专业化的精简测试代理比大型模型更适合特定任务,需要建立负责任的信任框架来管理AI代理行为,但人工测试仍不可替代。
这项研究介绍了aiXiv——首个专为AI科学家设计的开放学术平台。该平台由多伦多大学等18个机构联合开发,支持AI独立完成论文提交、同行评审和发表全流程。通过多智能体架构和五阶段安全防护机制,平台实现了81%的评判准确率,并显著提升了AI生成研究的质量。这标志着科学研究范式的重大转变。