DeepSeek 今天发布了一个新的大语言模型系列 - R1 系列,该系列专门针对推理任务进行了优化。
这家中国人工智能开发商已经在 Hugging Face 平台上开源了这些算法的源代码。
该大语言模型系列的主打产品是两个名为 R1 和 R1-Zero 的算法。据 DeepSeek 称,前者在多个推理基准测试中的表现优于 OpenAI 的 o1。而 R1-Zero 虽然能力相对较弱,但在机器学习研究领域可能代表着一个重要突破。
这两个大语言模型都采用了具有 6710 亿参数的混合专家 (MoE) 架构。MoE 模型由多个神经网络组成,每个网络都针对不同的任务集进行优化。当模型接收到输入提示时,一个称为路由器的机制会将查询发送到最适合处理它的神经网络。
MoE 架构的主要优势在于降低了推理成本。当用户向 MoE 模型输入提示时,查询不会激活整个 AI,而只会激活生成响应所需的特定神经网络。因此,R1 和 R1-Zero 在回答提示时激活的参数不到其 6710 亿参数的十分之一。
DeepSeek 在训练 R1-Zero 时采用了一种与研究人员通常使用的推理模型训练方法不同的方式。
推理优化的大语言模型通常使用强化学习和监督微调两种方法进行训练。前者通过试错来教会 AI 模型执行任务。而监督微调则通过提供任务执行示例来提升 AI 的输出质量。
在训练 R1-Zero 时,DeepSeek 跳过了监督微调阶段。尽管如此,该公司仍然成功地为模型配备了推理能力,比如将复杂任务分解为更简单子步骤的能力。
"这是首个通过纯强化学习验证大语言模型推理能力的开放研究,无需监督微调," DeepSeek 的研究人员详细说明。"这一突破为该领域的未来发展铺平了道路。"
尽管 R1-Zero 具有先进的功能集,但其输出质量有限。该模型的响应有时会出现"无休止的重复、可读性差和语言混杂"等问题,DeepSeek 的研究人员指出。该公司创建 R1 就是为了解决这些限制。
R1 是 R1-Zero 的增强版本,采用了修改后的训练工作流程开发。这个工作流程使用了 DeepSeek 在开发 R1-Zero 时省略的监督微调技术。该公司表示,这一改变显著提升了输出质量。
DeepSeek 使用近二十个基准测试将 R1 与四个流行的大语言模型进行了比较。据该公司称,其模型在多个基准测试中成功超越了 OpenAI 的推理优化模型 o1。在 o1 得分较高的大多数基准测试中,R1 的表现仅落后不到 5%。
R1 超越 o1 的基准测试之一是 LiveCodeBench。这是一个经常更新新练习题的编程任务集合。这降低了 AI 模型在公共网络上找到现成答案的可能性。
除了 R1 和 R1-Zero,DeepSeek 今天还开源了一系列能力较弱但硬件效率更高的模型。这些模型是从 R1 "蒸馏" 而来,这意味着在训练过程中,部分 LLM 的知识被转移到了这些模型中。
这些蒸馏模型的规模从 15 亿到 700 亿参数不等。它们基于 Llama 和 Qwen 开源大语言模型系列。DeepSeek 表示,其中一个蒸馏模型 R1-Distill-Qwen-32B 在多个基准测试中的表现优于 o1 的缩小版本 OpenAI-o1-mini。
好文章,需要你的鼓励
月之暗面Kimi K2技术报告:解读万亿参数的智能体模型(含K2与DeepSeek R1对比)
约翰霍普金斯大学研究团队开发了ETTIN模型套件,首次实现了编码器和解码器模型的公平比较。研究发现编码器擅长理解任务,解码器擅长生成任务,跨界训练效果有限。该研究为AI模型选择提供了科学依据,所有资料已开源供学术界使用。
Colt科技服务公司推出超低延迟云连接服务Colt ULL DCA,专门面向加密货币交易商和AI应用开发企业的高速需求。该服务结合超低延迟网络和专用云接入平台,绕过公共互联网提供专用高速路径。在AWS亚洲区域测试中,平均延迟比原生路由降低15%。随着亚太地区数字资产交易成熟和AI需求爆发,企业对安全高性能连接需求激增,Colt正加速在东南亚扩张布局。
博洛尼亚大学团队开发出情感增强的AI系统,通过结合情感分析和文本分类技术,显著提升了新闻文章中主观性表达的识别准确率。该研究覆盖五种语言,在多项国际评测中取得优异成绩,为打击虚假信息和提升媒体素养提供了新工具。