根据微软研究院和卡内基梅隆大学研究人员的一项研究表明,一些知识工作者可能正在过度依赖生成式 AI,这可能导致他们的问题解决能力下降。
在题为《生成式 AI 对批判性思维的影响》的论文中,七位研究人员对 319 名每周至少使用一次生成式 AI 的知识工作者进行了调查和分析,研究他们在使用 Copilot 和 ChatGPT 等工具时是否运用批判性思维。
研究发现,对任务有信心的员工更可能对生成式 AI 的输出结果进行批判性思考,而对任务不太有把握的员工往往会认为生成式 AI 产生的答案已经足够,不会去思考 AI 提供的内容。
研究人员建议需要重新思考企业 AI 工具的设计。
论文指出:"对 AI 的信任与降低批判性思维努力相关,而自信则与增加批判性思维相关。这种二元性表明设计策略应该注重平衡这些方面。"
研究团队建议,AI 工具应该包含支持长期技能发展的机制,并鼓励用户在与 AI 生成的输出交互时进行反思性思考。
研究人员表示:"这与可解释 AI 的目标相一致",他们指的是让 AI 说明其如何得出输出结果的做法。这对 DeepSeek 和 OpenAI 最新的思维链 AI 模型来说是个好消息,但仅仅解释 AI 的推理过程是不够的。
研究人员写道,好的 AI 工具应该通过主动设计策略来培养批判性思维,鼓励用户反思并在必要时提供帮助。
论文得出结论,我们应该适应 AI 融入的世界,通过运用批判性思维来验证 AI 输出及其在日常工作中的应用。考虑到七位作者中有六位来自销售 Copilot 的公司,这个结论可能在意料之中。
研究人员承认,知识工作者应该被教导"保持信息收集和问题解决的基础技能,避免过度依赖 AI",但不要过度。那些使用 ChatGPT、Copilot 和其他生成式 AI 工具的人应该接受"信息验证、响应整合和任务管理技能"的培训。
论文将在 2025 年 4 月底举行的人机交互系统会议上展示。
好文章,需要你的鼓励
北京交通大学与西蒙弗雷泽大学联合研发的混合神经-MPM方法实现了实时交互式流体模拟。该方法巧妙结合神经物理学与传统数值求解器,在低时空分辨率下运行神经网络并设置保障机制自动切换到MPM,显著降低计算延迟同时保持高保真度。团队还设计了基于扩散模型的控制器,支持用户通过简单草图直观控制流体行为,为游戏、VR和设计领域提供了实用解决方案。
这项研究介绍了EgoZero,一种创新的机器人学习系统,能够仅通过Project Aria智能眼镜捕获的人类示范数据,训练出零样本迁移的机器人操作策略。研究团队提出了一种形态无关的状态-动作表示方法,使用点集来统一人类和机器人数据,并开发了从原始视觉输入中提取准确3D表示的技术。在没有任何机器人训练数据的情况下,EgoZero在7种真实世界操作任务上实现了70%的成功率,展示了强大的泛化能力,为解决机器人学习中的数据瓶颈问题提供了新思路。
FLAME-MoE是卡内基梅隆大学团队开发的首个全透明混合专家语言模型研究平台,包含7个规模从3800万到17亿活跃参数的模型。它采用每层64位专家、top-8选择和2位共享专家的架构,公开所有训练数据、代码和检查点。实验显示,FLAME-MoE比相同计算量的密集模型提升3.4个百分点,并揭示了三个关键发现:专家逐渐专注于特定词汇子集,专家协同激活保持稀疏多样,路由行为在训练早期就趋于稳定。这一平台为MoE模型的系统研究提供了前所未有的开放基础。
这篇论文介绍了ModernGBERT,一个由维尔茨堡大学研究团队开发的高性能德语编码器模型家族(1.34亿和10亿参数版本)。研究将ModernBERT的创新架构应用于德语,同时通过LLM2Vec方法将德语解码器模型转换为编码器以进行对比研究。在SuperGLEBer和MTEB等基准测试中,ModernGBERT 10亿参数模型不仅超越了之前最先进的德语编码器,还在性能和参数效率方面优于转换后的编码器。研究团队还证明了更大模型能有效利用大规模单语语料库,为德语自然语言处理提供了全透明、高性能的资源。