Snowflake 与 Anthropic 宣布达成重要合作伙伴关系,将 AI 代理直接嵌入企业数据环境中,使企业能够在严格的安全控制下分析海量信息。
两家公司将把 Anthropic 的 Claude 3.5 Sonnet 模型整合到 Snowflake 的新型 Cortex Agents 平台中,让组织能够在现有安全框架内部署 AI 系统,以分析结构化数据库信息和非结构化文档内容。
Snowflake 的 AI 负责人 Baris Gultekin 在媒体圆桌会议上表示:"我们相信 AI 代理很快将成为企业工作中不可或缺的一部分。它们将提升客户支持分析和工程等团队的生产力,让员工有更多时间专注于更高价值的工作。"
Snowflake 借助 Anthropic 的 Claude 3.5 增强 AI 能力
该合作解决了企业 AI 应用的一个关键挑战 — 安全地大规模部署强大的 AI 模型。Claude 将完全在 Snowflake 的安全边界内运行,消除了向外部 AI 服务发送敏感数据的顾虑。
Anthropic 的首席产品官 Mike Krieger 在新闻发布会上表示:"在 Snowflake 的安全边界内运行 Claude,让客户能够在数据受控的情况下构建和部署 AI 应用。"
早期结果显示前景可期。Snowflake 报告称,在内部基准测试中,复杂文本转 SQL 任务的准确率达到 90%,显著优于以往方法。西门子能源已经建立了一个 AI 聊天机器人,可分析超过 50 万页的内部文档,而日产北美在分析经销商体验的客户情绪时达到了 97% 的准确率。
Snowflake 如何使用 AI 实现业务数据分析自动化
Cortex Agents 可以跨结构化数据库和非结构化内容编排复杂的数据任务。该系统包含两个关键组件:将自然语言转换为准确数据库查询的 Cortex Analyst,以及 Snowflake 声称在标准基准测试中至少领先竞争对手 11% 的混合搜索系统 Cortex Search。
Snowflake 的产品执行副总裁 Christian Kleinerman 表示:"让 Snowflake 客户能够使用如此先进的模型有助于提升使用体验。无需考虑使用哪个模型,需要多少提示才能让系统按照我想要的方式运行或回答我需要的问题...这是非常棒的。"
Snowflake 的 Cortex Agents 承诺更智能、更快速的企业 AI
这次合作标志着企业 AI 战略的转变。企业现在寻求将 AI 直接整合到现有数据基础设施中,而不是将其视为独立的技术。
"没有人只是在寻找一个将输入 token 转换为输出 token 的供应商,"Krieger 解释道。"他们在寻找能够帮助他们制定 AI 战略的合作伙伴,这种战略要与他们的价值观一致,而且他们相信这个合作伙伴能够保持在技术前沿。"
该平台包括全面的监控功能,并维持现有的访问控制和合规要求 — 这些特性在 AI 监管不断发展的情况下至关重要。
Kleinerman 在发布会上指出:"一定程度的监管明确性会有帮助。但我认为这取决于我们所有人,特别是那些深入了解细节的研究实验室,我们要参与帮助制定这些监管规则。"
为何 Snowflake 的 AI 战略关注安全和治理
这次合作为技术决策者提供了一条在保持安全和治理的同时大规模部署 AI 的潜在途径。成功与否可能取决于谨慎的实施和能够带来可衡量业务价值的明确用例。
对于正在应对日益增长的数据量和复杂性的企业来说,安全有效地部署 AI 的能力可能成为关键的竞争优势。该平台将先进的 AI 能力与强大的安全控制相结合,预示着智能代理将成为企业运营不可分割的一部分。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。