作者|高飞
多数人仍然习惯用传统的“两层思维”生态架构来思考大模型:系统基座在下面,面向用户的应用在上面,二者泾渭分明。
历史上看,这种二分法是对的:
1. DOS 操作系统面世时,没有可执行的 “.com” 或 “.exe” 程序,用户根本无从交互;
2. Windows 问世时,也没有人会拿一个操作系统单独“空跑”。哪怕是当年经典的“纸牌”和“扫雷”,也是微软为了让大众理解并熟悉图形界面,不得不自己编写的小应用;
3. iOS 让智能手机成为一种基础设施,但首批吸引用户使用的,还是纸飞机、拍照,甚至打电话这些关键应用;
4. 云计算概念提出来后,人们谈论的都是基于云的 SaaS 和各种网站,用不了多久就变成“这家公司用 AWS 跑后台”这样的陈述。云计算本身并没有变成一个直接面向大众的入口。
但是,AI 之所以是一场技术革命,就意味着它会颠覆我们已有的常识。我认为,两层架构在这个时代已经失效。
举个例子:OpenAI 的 ChatGPT 从一开始发布时,就既是一个模型,又是一个面向大众的消费级应用。
你不需要再去下载任何“子程序”才能让 ChatGPT 跑起来;只需要在对话框输入文字(提示工程,Prompt Engineering),它就能执行推理或生成内容。它甚至创造了最快达到 1 亿月活用户的新纪录。这是一个毫无争议的应用。
但它同时也是一种模型,OpenAI提供了 API 调用,让无数应用可以基于它构建。
当我们说 “DeepSeek” 时,既可能指一种在 LMarena、AIME 榜单上排名靠前的前沿推理模型,也可以指一款曾登顶中美等多个国家 iOS 应用商店的 App。
所以,下次再有人问:“我们该投大语言模型还是应用层?”也许可以告诉他,这不是一个非此即彼的问题。在这个领域里,模型就是应用,应用也就是模型。
如果你在做模型,你的用户并不需要了解多少编译、链接或 SDK 之类的东西,就能够通过自然语言提示来使用它。
反过来,如果你在做 AI 应用,其实最终还是在向用户交付一项“大模型”能力,无论你使用的是提示工程、强化学习、工作流、Agent,还是别的“套壳”手段,底层都还是那台贯通一切的“大脑”。
模型与应用的边界正在塌陷,用户甚至不知道,或者并不在意自己是在“跑模型”还是在“用程序”。
但是,除了投资规模,做应用也并不比做基座模型廉价,因为在这个时代,切换一个模型底座并不比换辆车开更难。几乎你使用的所有 AI 应用,都提供了在后台切换模型的设置选项。
你能在云计算时代想象这些吗?一个网站提供了切换不同云主机访问?还记得适配安卓、iOS 等不同系统、不同尺寸的手机有多难吗?
只不过,应用开发者还是需要一点戒备。你的产品最好不要在“智能演化”的延长线上。就像山姆·奥特曼(Sam Altman)所说:如果基座模型变得更好,你的应用也应该同步变得更好,而不是被彻底替代、不再被需要。
好文章,需要你的鼓励
多伦多大学研究团队提出Squeeze3D压缩框架,巧妙利用3D生成模型的隐含压缩能力,通过训练映射网络桥接编码器与生成器的潜在空间,实现了极致的3D数据压缩。该技术对纹理网格、点云和辐射场分别达到2187倍、55倍和619倍的压缩比,同时保持高视觉质量,且无需针对特定对象训练网络,为3D内容传输和存储提供了革命性解决方案。
浙江大学与腾讯联合研究团队提出MoA异构适配器混合方法,通过整合不同类型的参数高效微调技术,解决了传统同质化专家混合方法中的表征坍塌和负载不均衡问题。该方法在数学和常识推理任务上显著优于现有方法,同时大幅降低训练参数和计算成本,为大模型高效微调提供了新的技术路径。
耶鲁、哥大等四校联合研发的RKEFino1模型,通过在Fino1基础上注入XBRL、CDM、MOF三大监管框架知识,显著提升了AI在数字监管报告任务中的表现。该模型在知识问答准确率提升超过一倍,数学推理能力从56.87%提升至70.69%,并在新颖的数值实体识别任务中展现良好潜力,为金融AI合规应用开辟新路径。
加州大学圣巴巴拉分校研究团队开发出能够自我进化的AI智能体,通过《卡坦岛拓荒者》桌游测试,这些AI能在游戏过程中自主修改策略和代码。实验显示,具备自我进化能力的AI显著超越静态版本,其中Claude 3.7模型性能提升达95%。研究验证了AI从被动工具向主动伙伴转变的可能性,为复杂决策场景中的AI应用开辟新路径。