作者|高飞
多数人仍然习惯用传统的“两层思维”生态架构来思考大模型:系统基座在下面,面向用户的应用在上面,二者泾渭分明。
历史上看,这种二分法是对的:
1. DOS 操作系统面世时,没有可执行的 “.com” 或 “.exe” 程序,用户根本无从交互;
2. Windows 问世时,也没有人会拿一个操作系统单独“空跑”。哪怕是当年经典的“纸牌”和“扫雷”,也是微软为了让大众理解并熟悉图形界面,不得不自己编写的小应用;
3. iOS 让智能手机成为一种基础设施,但首批吸引用户使用的,还是纸飞机、拍照,甚至打电话这些关键应用;
4. 云计算概念提出来后,人们谈论的都是基于云的 SaaS 和各种网站,用不了多久就变成“这家公司用 AWS 跑后台”这样的陈述。云计算本身并没有变成一个直接面向大众的入口。
但是,AI 之所以是一场技术革命,就意味着它会颠覆我们已有的常识。我认为,两层架构在这个时代已经失效。
举个例子:OpenAI 的 ChatGPT 从一开始发布时,就既是一个模型,又是一个面向大众的消费级应用。
你不需要再去下载任何“子程序”才能让 ChatGPT 跑起来;只需要在对话框输入文字(提示工程,Prompt Engineering),它就能执行推理或生成内容。它甚至创造了最快达到 1 亿月活用户的新纪录。这是一个毫无争议的应用。
但它同时也是一种模型,OpenAI提供了 API 调用,让无数应用可以基于它构建。
当我们说 “DeepSeek” 时,既可能指一种在 LMarena、AIME 榜单上排名靠前的前沿推理模型,也可以指一款曾登顶中美等多个国家 iOS 应用商店的 App。
所以,下次再有人问:“我们该投大语言模型还是应用层?”也许可以告诉他,这不是一个非此即彼的问题。在这个领域里,模型就是应用,应用也就是模型。
如果你在做模型,你的用户并不需要了解多少编译、链接或 SDK 之类的东西,就能够通过自然语言提示来使用它。
反过来,如果你在做 AI 应用,其实最终还是在向用户交付一项“大模型”能力,无论你使用的是提示工程、强化学习、工作流、Agent,还是别的“套壳”手段,底层都还是那台贯通一切的“大脑”。
模型与应用的边界正在塌陷,用户甚至不知道,或者并不在意自己是在“跑模型”还是在“用程序”。
但是,除了投资规模,做应用也并不比做基座模型廉价,因为在这个时代,切换一个模型底座并不比换辆车开更难。几乎你使用的所有 AI 应用,都提供了在后台切换模型的设置选项。
你能在云计算时代想象这些吗?一个网站提供了切换不同云主机访问?还记得适配安卓、iOS 等不同系统、不同尺寸的手机有多难吗?
只不过,应用开发者还是需要一点戒备。你的产品最好不要在“智能演化”的延长线上。就像山姆·奥特曼(Sam Altman)所说:如果基座模型变得更好,你的应用也应该同步变得更好,而不是被彻底替代、不再被需要。
好文章,需要你的鼓励
惠普企业(HPE)发布搭载英伟达Blackwell架构GPU的新服务器,抢占AI技术需求激增市场。IDC预测,搭载GPU的服务器年增长率将达46.7%,占总市场价值近50%。2025年服务器市场预计增长39.9%至2839亿美元。英伟达向微软等大型云服务商大量供应Blackwell GPU,每周部署约7.2万块,可能影响HPE服务器交付时间。HPE在全球服务器市场占13%份额。受美国出口限制影响,国际客户可能面临额外限制。新服务器将于2025年9月2日开始全球发货。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
安全专业协会ISACA面向全球近20万名认证安全专业人员推出AI安全管理高级认证(AAISM)。研究显示61%的安全专业人员担心生成式AI被威胁行为者利用。该认证涵盖AI治理与项目管理、风险管理、技术与控制三个领域,帮助网络安全专业人员掌握AI安全实施、政策制定和风险管控。申请者需持有CISM或CISSP认证。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。