总部位于帕洛阿尔托的新创公司 Inception,由斯坦福大学计算机科学教授 Stefano Ermon 创立,声称已开发出一种基于"扩散"技术的全新 AI 模型。Inception 将其称为基于扩散的大语言模型,简称"DLM"。
目前受到最多关注的生成式 AI 模型大致可分为两类:大语言模型 (LLM) 和扩散模型。基于 Transformer 架构的 LLM 主要用于文本生成。而扩散模型则为 Midjourney 和 OpenAI 的 Sora 等 AI 系统提供支持,主要用于创建图像、视频和音频。
据该公司介绍,Inception 的模型具备传统大语言模型的功能,包括代码生成和问答能力,但性能显著提升,且计算成本更低。
Ermon 告诉 TechCrunch,他在斯坦福实验室长期研究如何将扩散模型应用于文本。他的研究基于这样一个观察:与扩散技术相比,传统大语言模型相对较慢。
对于大语言模型,Ermon 表示:"在生成第一个词之前你无法生成第二个词,在生成前两个词之前你也无法生成第三个词。"
Ermon 一直在寻找将扩散方法应用于文本的方式,因为与按顺序工作的大语言模型不同,扩散模型首先对要生成的数据 (如图片) 进行粗略估计,然后一次性将数据聚焦成型。
Ermon 提出假设,使用扩散模型可以并行生成和修改大块文本。经过多年尝试,Ermon 和他的一名学生取得了重大突破,并在去年发表的研究论文中详细说明了这一成果。
认识到这项进展的潜力,Ermon 于去年夏天创立了 Inception,并邀请两位前学生——UCLA 教授 Aditya Grover 和康奈尔大学教授 Volodymyr Kuleshov 共同领导公司。
虽然 Ermon 婉拒讨论 Inception 的融资情况,但据 TechCrunch 了解,Mayfield Fund 已投资该公司。
Emron 表示,Inception 已经获得了包括未具名的财富 100 强企业在内的多个客户,这些客户都急需降低 AI 延迟并提高处理速度。
"我们发现我们的模型能够更高效地利用 GPU,"Ermon 提到这些在生产环境中常用的计算机芯片时说,"我认为这意味着重大突破。这将改变人们构建语言模型的方式。"
Inception 提供 API 接口、本地部署和边缘设备部署选项,支持模型微调,并提供一套适用于各种场景的开箱即用 DLM。该公司声称其 DLM 的运行速度可达传统大语言模型的 10 倍,成本则降低至十分之一。
"我们的'小型'编程模型与 [OpenAI 的] GPT-4 mini 性能相当,但速度快 10 倍以上,"该公司发言人告诉 TechCrunch。"我们的'迷你'模型性能超过 [Meta 的] Llama 3.1 8B 等小型开源模型,每秒可处理超过 1,000 个 token。"
"Token"是业内用语,指原始数据的基本单位。如果 Inception 的声明属实,每秒处理 1,000 个 token 确实是一个令人印象深刻的速度。
好文章,需要你的鼓励
研究人员正探索AI能否预测昏迷患者的医疗意愿,帮助医生做出生死决策。华盛顿大学研究员Ahmad正推进首个AI代理人试点项目,通过分析患者医疗数据预测其偏好。虽然准确率可达三分之二,但专家担心AI无法捕捉患者价值观的复杂性和动态变化。医生强调AI只能作为辅助工具,不应替代人类代理人,因为生死决策依赖具体情境且充满伦理挑战。
微软研究院发布突破性多语言AI技术UPDESH,通过"自下而上"数据生成策略,让AI真正理解不同文化背景下的语言表达。该技术基于各语言维基百科内容生成950万个训练数据点,覆盖13种印度语言,显著提升低资源语言AI性能,为构建文化敏感型AI系统提供新路径。
麻省理工学院研究发现过度依赖AI会导致认知债务,削弱基本思维能力。研究表明交替进行无辅助思考和AI支持工作的模式能保持认知敏锐度。这种认知高强度间歇训练模仿体能训练中的HIIT模式,通过短时间高强度思考与恢复期交替进行,可以强化大脑神经回路,防止认知衰退,提升独立思考能力。
NVIDIA团队提出RLBFF方法,将AI训练中的复杂评价转化为明确的二元判断标准,解决了传统人类反馈模糊和可验证奖励局限的问题。该方法在多个权威测试中取得突破性成果,其中JudgeBench获得第一名,训练的模型性能媲美知名商业模型但成本仅为其5%,为AI训练领域带来重要方法论创新。