据多家媒体今日报道,Microsoft Corporation 已开发出一系列可与 OpenAI 和 Anthropic PBC 的算法相媲美的大语言模型。
据 Bloomberg 报道的消息源称,这个大语言模型系列被称为 MAI。这可能是"Microsoft artificial intelligence"的首字母缩写。它也可能是对该公司去年推出的内部开发的 AI 芯片 Maia 100 的致敬。微软可能正在使用这款处理器来支持新的 MAI 模型。
该公司最近对这个大语言模型系列进行了性能测试。在评估过程中,微软工程师检验了 MAI 是否能为公司的 Copilot 系列 AI 助手提供支持。测试数据显示,这个大语言模型系列的性能可以与 OpenAI 和 Anthropic 的模型相媲美。
微软评估 MAI 是否可以集成到 Copilot 中,这表明该大语言模型系列更倾向于通用处理而非推理。Copilot 支持的许多任务可以用通用模型来完成。据 Bloomberg 报道,微软目前正在开发第二个针对推理任务优化的大语言模型系列。
报道没有具体说明微软正在训练的模型数量或其参数数量等细节。这些模型是否提供多模态功能也尚不清楚。
MAI 可以帮助公司减少对 OpenAI 的依赖,目前 Copilot 使用的大语言模型就来自 OpenAI。微软已向这家 ChatGPT 开发商投资超过 130 亿美元,直到最近还是其独家云服务提供商。今年 1 月,两家公司修改了合作条款,允许 OpenAI 将工作负载转移到竞争对手的平台上。
如果微软让 Copilot 超越 OpenAI 的模型,它可能不仅会添加一个而是多个竞争对手的大语言模型支持。据报道,该公司已经测试了是否可以使用来自 Anthropic、Meta Platforms Inc.、DeepSeek 和 xAI Corp. 的算法来支持 Copilot。
微软发言人对 Bloomberg 表示:"正如我们之前所说,我们正在使用模型组合,这包括继续与 OpenAI 的深度合作,以及来自 Microsoft AI 和开源模型。"
MAI 并非该公司首次进入大语言模型市场。它还开发了 Phi,这是一系列针对能效优化的开源语言模型。该模型系列目前已迭代到第四代。
最新的两个 Phi 算法——Phi-4-mini 和 Phi-4-multimodal 于今年 2 月发布。前者拥有 38 亿参数,适用于解决数学问题等推理任务。而 Phi-4-multimodal 则是 Phi-4-mini 的升级版本,可以处理多模态输入。微软表示,后者在某些任务上的表现几乎可以媲美拥有更多参数的 GPT-4。
为了构建 Phi-4 模型,微软开发了依赖合成数据的新型大语言模型训练方法。这些方法可能对 MAI 和该公司据报道正在开发的推理优化大语言模型系列有所帮助。
好文章,需要你的鼓励
研究显示,英国中小企业虽占企业总数99.9%,但因资源与专业不足,难以有效应对网络攻击。CyCOS项目旨在通过构建支持社区,帮助中小企业提升网络防御能力。
这项研究介绍了EOC-Bench,一个创新基准测试,专门评估多模态大语言模型在第一人称视角场景中对物体的认知能力。研究团队从三个时间维度(过去、现在和未来)构建了3,277个问答对,涵盖11个细粒度评估维度,创新性地使用视觉提示解决物体引用问题。评估结果显示,即使最先进的模型如GPT-4o在物体时间感知方面也显著落后于人类,特别是在绝对时间感知上。这一研究为发展更强大的体感AI系统提供了重要参考,对增强现实和机器人技术等领域具有深远影响。
Wispr 的 Flow 是一款创新的 iOS 语音输入软件,借助 AI 技术能将语音无缝转换为精美文字,每周免费 2000 字,支持 100 多种语言,并能实现多设备同步。
这篇论文由加州大学伯克利分校和香港大学的研究团队提出了LIFT方法,挑战了传统视觉语言模型需要同时训练文本和图像编码器的假设。研究发现,使用预训练的大型语言模型作为固定文本编码器,只训练图像编码器就能在多项任务上超越CLIP,特别是在理解空间位置、对象属性关联等组合信息方面。LIFT不仅提高了计算效率,还解决了CLIP在处理复杂语义关系和长文本描述时的短板,为视觉语言模型提供了一条更高效的发展路径。