Google LLC 今天推出了两款全新的人工智能模型 - Gemini Robotics 和 Gemini Robotics-ER,这两款模型专门用于为自主机器提供动力。
这些算法基于该公司的 Gemini 2.0 系列大语言模型。Gemini 2.0 于去年 12 月推出,不仅可以处理文本,还能处理包括视频在内的多模态数据。这种多模态处理能力使新的 Gemini Robotics 和 Gemini Robotics-ER 模型能够分析机器人摄像头捕捉的画面,从而做出决策。
Gemini Robotics 被描述为一个视觉-语言-动作模型。据 Google 介绍,配备该模型的机器人可以根据自然语言指令执行复杂任务。例如,用户可以要求 AI 将纸张折叠成折纸形状,或将物品放入 Ziploc 袋中。
传统上,教导工业机器人执行新任务需要手动编程。这项工作不仅需要专业技能,还会消耗大量时间。为了简化机器人配置过程,Google 的研究人员在设计 Gemini Robotics 时特别注重其通用性。该公司表示,这款 AI 可以执行在训练过程中未曾学习过的任务,从而减少手动编程的需求。
为了测试 Gemini Robotics 对新任务的响应能力,Google 使用 AI 泛化基准进行评估。结果表明,该算法的性能是早期视觉-语言-动作模型的两倍多。根据 Google 的说法,Gemini Robotics 不仅能执行未经训练的任务,还能在环境条件发生变化时调整其执行方式。
Google DeepMind 机器人部门负责人 Carolina Parada 在博客文章中详细说明:"如果物体从机器人手中滑落,或有人移动了物品位置,Gemini Robotics 能够快速重新规划并继续执行任务 —— 这对于在充满意外的现实世界中运行的机器人来说是一项至关重要的能力。"
公司今天推出的另一个 AI 模型 Robotics-ER 主要针对空间推理能力。空间推理指的是机器人在执行任务前必须进行的一系列复杂计算。例如,拿起一个咖啡杯需要机器人手臂找到杯柄并计算最佳抓取角度。
在制定任务执行计划后,Gemini Robotics-ER 利用 Gemini 2.0 的编程能力将计划转换为配置脚本。这个脚本用于对安装了该 AI 的机器人进行编程。如果某个任务对 Gemini Robotics-ER 来说过于复杂,开发者可以通过"少量人工示范"来教导它最佳执行方案。
Parada 写道:"Gemini Robotics-ER 可以直接执行控制机器人所需的所有步骤,包括感知、状态估计、空间理解、规划和代码生成。在这种端到端的场景中,该模型的成功率比 Gemini 2.0 高出 2-3 倍。"
Google 将向多个合作伙伴提供 Gemini Robotics-ER,其中包括人形机器人初创公司 Apptronik Inc.,该公司上个月获得了 3.5 亿美元融资,Google 也参与其中。Google 将与 Apptronik 合作开发配备 Gemini 2.0 的人形机器人。
好文章,需要你的鼓励
AI正在彻底改写创业规则:YC最新数据显示,10人团队12个月达成千万美元营收已成常态,"氛围编程"让技术不再是瓶颈,而创始人能否深度理解客户需求成为成败关键。当6人团队就能创造八位数收入时,我们看到的不仅是速度革命,更是对公司本质的重新定义。
这项由阿伯丁大学和格勒诺布尔阿尔卑斯大学研究者联合完成的研究揭示了大语言模型处理日期时的关键问题:现代分词器常将日期分割成无意义的碎片,如"20250312"被切分为"202"、"503"、"12",这严重影响时间推理能力。研究提出了日期碎片化率指标,创建了DATEAUGBENCH测试集,并通过内部机制分析发现,大型模型能在早期层快速"修复"碎片化日期,但其推理路径与人类理解方式显著不同,这解释了模型在处理非标准日期时的准确率下降。
MUG-Eval是KAIST和Trillion Labs联合开发的创新多语言评估框架,通过让语言模型在目标语言中进行自我对话来评估其生成能力。该方法独特之处在于不依赖语言特定工具或人工标注数据,而是通过任务完成率间接衡量语言能力。研究团队测试了8种顶级语言模型在30种语言上的表现,发现其结果与传统评估方法高度一致(相关系数>0.75)。MUG-Eval揭示了模型在低资源语言上表现显著落后,并发现英语并非评估低资源语言的最佳替代。该框架理论上支持2,102种语言,为真正包容的AI评估提供了新途径。
浙江大学研究团队开发的"自制动力训练"(Self-Braking Tuning,SBT)方法解决了大型语言模型在推理过程中的过度思考问题。该方法不依赖外部干预,而是培养模型自主识别冗余推理并适时终止的能力。研究者通过分析推理效率比率和过度思考标记比率,构建了两种数据策略:SBT-E(精确版)和SBT-D(动态版)。实验结果表明,经过训练的模型在多个数学基准测试上保持原有准确率的同时,将标记消耗减少了30%到60%,显著提高了推理效率。这项创新使AI系统能更像人类一样有效思考,为资源受限环境下的AI部署提供了新解决方案。