Google LLC 今天推出了两款全新的人工智能模型 - Gemini Robotics 和 Gemini Robotics-ER,这两款模型专门用于为自主机器提供动力。
这些算法基于该公司的 Gemini 2.0 系列大语言模型。Gemini 2.0 于去年 12 月推出,不仅可以处理文本,还能处理包括视频在内的多模态数据。这种多模态处理能力使新的 Gemini Robotics 和 Gemini Robotics-ER 模型能够分析机器人摄像头捕捉的画面,从而做出决策。
Gemini Robotics 被描述为一个视觉-语言-动作模型。据 Google 介绍,配备该模型的机器人可以根据自然语言指令执行复杂任务。例如,用户可以要求 AI 将纸张折叠成折纸形状,或将物品放入 Ziploc 袋中。
传统上,教导工业机器人执行新任务需要手动编程。这项工作不仅需要专业技能,还会消耗大量时间。为了简化机器人配置过程,Google 的研究人员在设计 Gemini Robotics 时特别注重其通用性。该公司表示,这款 AI 可以执行在训练过程中未曾学习过的任务,从而减少手动编程的需求。
为了测试 Gemini Robotics 对新任务的响应能力,Google 使用 AI 泛化基准进行评估。结果表明,该算法的性能是早期视觉-语言-动作模型的两倍多。根据 Google 的说法,Gemini Robotics 不仅能执行未经训练的任务,还能在环境条件发生变化时调整其执行方式。
Google DeepMind 机器人部门负责人 Carolina Parada 在博客文章中详细说明:"如果物体从机器人手中滑落,或有人移动了物品位置,Gemini Robotics 能够快速重新规划并继续执行任务 —— 这对于在充满意外的现实世界中运行的机器人来说是一项至关重要的能力。"
公司今天推出的另一个 AI 模型 Robotics-ER 主要针对空间推理能力。空间推理指的是机器人在执行任务前必须进行的一系列复杂计算。例如,拿起一个咖啡杯需要机器人手臂找到杯柄并计算最佳抓取角度。
在制定任务执行计划后,Gemini Robotics-ER 利用 Gemini 2.0 的编程能力将计划转换为配置脚本。这个脚本用于对安装了该 AI 的机器人进行编程。如果某个任务对 Gemini Robotics-ER 来说过于复杂,开发者可以通过"少量人工示范"来教导它最佳执行方案。
Parada 写道:"Gemini Robotics-ER 可以直接执行控制机器人所需的所有步骤,包括感知、状态估计、空间理解、规划和代码生成。在这种端到端的场景中,该模型的成功率比 Gemini 2.0 高出 2-3 倍。"
Google 将向多个合作伙伴提供 Gemini Robotics-ER,其中包括人形机器人初创公司 Apptronik Inc.,该公司上个月获得了 3.5 亿美元融资,Google 也参与其中。Google 将与 Apptronik 合作开发配备 Gemini 2.0 的人形机器人。
好文章,需要你的鼓励
IBM Spyre加速器将于本月晚些时候正式推出,为z17大型机、LinuxONE 5和Power11系统等企业级硬件的AI能力提供显著提升。该加速器基于定制芯片的PCIe卡,配备32个独立加速器核心,专为处理AI工作负载需求而设计。系统最多可配置48张Spyre卡,支持多模型AI处理,包括生成式AI和大语言模型,主要应用于金融交易欺诈检测等关键业务场景。
加拿大女王大学研究团队首次对开源AI生态系统进行端到端许可证合规审计,发现35.5%的AI模型在集成到应用时存在许可证违规。他们开发的LicenseRec系统能自动检测冲突并修复86.4%的违规问题,揭示了AI供应链中系统性的"许可证漂移"现象及其法律风险。
意大利初创公司Ganiga开发了AI驱动的智能垃圾分拣机器人Hoooly,能自动识别并分类垃圾和可回收物。该公司产品包括机器人垃圾桶、智能盖子和废物追踪软件,旨在解决全球塑料回收率不足10%的问题。2024年公司收入50万美元,已向谷歌和多个机场销售超120台设备,计划融资300万美元并拓展美国市场。
这项由剑桥大学、清华大学和伊利诺伊大学合作的研究首次将扩散大语言模型引入语音识别领域,开发出Whisper-LLaDA系统。该系统具备双向理解能力,能够同时考虑语音的前后文信息,在LibriSpeech数据集上实现了12.3%的错误率相对改进,同时在大多数配置下提供了更快的推理速度,为语音识别技术开辟了新的发展方向。