突发新闻:又一科技巨头加速其 AI 研发进程。这一次的主角是 Meta,据路透社报道,该公司正在测试其首款自研的 AI 训练芯片。此举旨在降低其庞大的基础设施成本,并减少对 NVIDIA 的依赖 (据说 NVIDIA 经常让扎克伯格说出"成人用语")。如果一切顺利,Meta 希望能在 2026 年将其用于训练。
据报道,Meta 已开始小规模部署这款专用加速器芯片,该芯片专门设计用于 AI 任务 (因此比通用型 NVIDIA GPU 更节能)。在完成首次"流片"后,公司随即开始部署。流片是硅芯片开发中的一个阶段,即将完整设计送去进行制造测试。
该芯片属于 Meta Training and Inference Accelerator (MTIA) 系列,这是该公司专注于生成式 AI、推荐系统和高级研究的自研芯片系列。
去年,该公司开始使用 MTIA 芯片进行推理,这是 AI 模型在后台进行的预测过程。Meta 已开始在 Facebook 和 Instagram 的新闻推送推荐系统中使用推理芯片。据路透社报道,该公司计划也开始使用训练芯片。两种芯片的长期计划据称是从推荐系统开始,最终用于像 Meta AI 聊天机器人这样的生成式产品。
在 2022 年订购了价值数十亿美元的 GPU 后,该公司成为 NVIDIA 最大的客户之一。这是 Meta 的一个转折点,此前该公司放弃了一款在小规模测试部署中失败的自研推理芯片——这与现在正在进行的训练芯片测试类似。
好文章,需要你的鼓励
Coursera在2025年连接大会上宣布多项AI功能更新。10月将推出角色扮演功能,通过AI人物帮助学生练习面试技巧并获得实时反馈。新增AI评分系统可即时批改代码、论文和视频作业。同时引入完整性检查和监考系统,通过锁定浏览器和真实性验证打击作弊行为,据称可减少95%的不当行为。此外,AI课程构建器将扩展至所有合作伙伴,帮助教育者快速设计课程。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
英国政府研究显示,神经多样性员工从AI聊天机器人中获得的收益远超普通同事。在Microsoft 365 Copilot试点中,神经多样性员工满意度达90%置信水平,推荐度达95%置信水平,均显著高于其他用户。患有ADHD和阅读障碍的员工表示AI工具为他们提供了前所未有的工作支持,特别是在报告撰写方面。研究表明,AI工具正在填补传统无障碍技术未能解决的职场差距,为残障人士提供了隐形的工作辅助。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。