Oxa 通过战略收购自主工业服务提供商 StreetDrone 以加强其在工业物流领域的地位后,这家自动驾驶车辆软件提供商正进一步深入产业,计划使用 Nvidia Cosmos 生成式世界基础模型 (WFMs) 来加速工业移动自动化 (IMA)。
解释此举原因时,Oxa 指出,自工业革命以来,自动化提高了生产力,降低了成本并促进了创新,同时,企业软件推动了数十年的业务任务自动化,创造了其称之为"巨大"的经济价值。现在,该公司表示,物理人工智能 (AI) 正在开启新的 IMA 时代,自动化企业每日执行的数十亿移动任务。
在实际应用中,IMA 将实现工作车辆重复驾驶任务的自动化,例如固定路线的共享客运、机场地面运输 (行李、货物、乘客/机组人员)、港口和零售场地的拖车/集装箱调度、资产监控、工厂生产线零部件物流以及枢纽间的卡车物流。这些任务目前由全球约 4 亿辆工作车辆执行,通常在统一路线上完成,且具有特定场所特征——使它们成为自动化的理想选择。
Oxa 计算出 IMA 代表着 2 万亿美元的市场机会,因为企业越来越多地转向自动化来执行日常重复性移动任务,如客运、资产监控和工厂零部件生产线物流,支持提高生产力、降低成本和促进创新。
此次合作将使 Oxa 使用 Nvidia 的 Cosmos 世界基础模型——这些模型能够从文本和图像等多模态输入生成逼真的虚拟世界状态视频——包括 Cosmos Predicts 模型,以增强其自身的培训工具,如 Oxa Sensor Expansion,这些工具位于其开发工具链 Oxa Foundry 中。
通过与 Nvidia 的合作,Oxa 表示它将能够生成大量多样化且逼真的合成数据,加速其软件的训练和验证,同时显著加快安全、可靠和高效的自动驾驶产品的开发和部署。
使用这类工具的目标是,通过生成各种逼真的合成传感器数据,将为 Oxa 的自动驾驶软件提供更严格的训练和验证,加速开发其保证将是安全、可靠和高效的自动驾驶服务。
该公司表示,其基于 Oxa Foundry 的开发采用了一种新颖的生成式 AI 方法,在计划好的、统一且可重复的路线上"超本地化"地训练和保证其核心 Oxa Driver 自动驾驶软件,将其从通才转变为专才。这些生成式 AI 技术能够创建"具有代表性"且有针对性的"教学大纲",用于教授和确保 Oxa Driver 的质量,同时具有最小且经济高效的源数据需求。
"通过与 Nvidia 合作并利用其最新技术,我们正在加速我们向客户提供安全、可靠和高效自动化解决方案的能力,解决驾驶员短缺和生产力差距等关键挑战,"Oxa 首席执行官 Gavin Jackson 表示。"将 Cosmos 用于合成数据生成与我们自己的技术相结合,将有助于实现我们的目标并开启 2 万亿美元的 IMA 市场。"
好文章,需要你的鼓励
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
Meta为Facebook和Instagram推出全新AI翻译工具,可实时将用户生成内容转换为其他语言。该功能在2024年Meta Connect大会上宣布,旨在打破语言壁垒,让视频和短视频内容触达更广泛的国际受众。目前支持英语和西班牙语互译,后续将增加更多语言。创作者还可使用AI唇形同步功能,创造无缝的口型匹配效果,并可通过创作者控制面板随时关闭该功能。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。