一家名为 Deep Cogito 的新公司近期揭开面纱,推出了一系列可以在"推理"和非推理模式之间切换的开放 AI 模型。
像 OpenAI 的 o1 这样的推理模型在数学和物理等领域展现出巨大潜力,这要归功于它们能够通过逐步解决复杂问题来进行自我验证的能力。然而,这种推理能力是有代价的:更高的计算成本和延迟。这就是为什么像 Anthropic 这样的实验室正在追求"混合"模型架构,将推理组件与标准的非推理元素相结合。混合模型可以快速回答简单问题,同时在处理更具挑战性的问题时投入更多时间思考。
Deep Cogito 的所有模型(称为 Cogito 1)都是混合模型。该公司声称,这些模型的性能优于同等规模的最佳开放模型,包括来自 Meta 和中国 AI 初创公司 DeepSeek 的模型。
该公司在博客文章中解释道:"每个模型都可以直接回答问题,或在回答前进行自我反思(类似推理模型)。所有这些都是由一个小团队在大约 75 天内开发完成的。"
Cogito 1 模型的参数规模从 30 亿到 700 亿不等,该公司表示,在未来几周和几个月内,将会推出参数规模达到 6710 亿的模型。参数数量大致对应于模型的问题解决能力,通常参数越多越好。
需要说明的是,Cogito 1 并非从零开始开发。Deep Cogito 是在 Meta 的开源 Llama 和阿里巴巴的 Qwen 模型基础上构建的。该公司表示,他们应用了新颖的训练方法来提升基础模型的性能,并实现可切换的推理能力。
根据 Cogito 的内部基准测试结果,最大的 Cogito 1 模型——启用推理功能的 Cogito 70B,在某些数学和语言评估中的表现优于 DeepSeek 的 R1 推理模型。在禁用推理功能的情况下,Cogito 70B 在通用 AI 测试 LiveBench 上的表现也超过了 Meta 最近发布的 Llama 4 Scout 模型。
所有 Cogito 1 模型都可以通过 Fireworks AI 和 Together AI 这两家云服务提供商的 API 下载或使用。
"目前,我们仍处于扩展曲线的早期阶段,仅使用了传统大语言模型后期/持续训练所需计算资源的一小部分,"Cogito 在其博客文章中写道。"展望未来,我们正在研究互补的后期训练方法来实现自我提升。"
根据加利福尼亚州的文件显示,总部位于旧金山的 Deep Cogito 成立于 2024 年 6 月。该公司的 LinkedIn 页面列出了两位联合创始人:Drishan Arora 和 Dhruv Malhotra。Malhotra 此前是 Google AI 实验室 DeepMind 的产品经理,负责生成式搜索技术。Arora 曾是 Google 的高级软件工程师。
根据 PitchBook 的信息,Deep Cogito 的投资方包括 South Park Commons,该公司雄心勃勃地致力于构建"通用超级智能"。公司创始人将这个术语理解为能够比大多数人更好地完成任务,并"发现我们尚未想象到的全新能力"的 AI。
好文章,需要你的鼓励
TechCrunch Disrupt 2025 AI舞台将汇聚塑造科技未来的领军人物,顶尖风投将揭示在快速变化的AI领域获得融资的关键。来自Apptronik、ElevenLabs、Hugging Face、Runway等创新企业的领导者将分享前沿洞见,探讨AI如何重塑创意过程、改变物理世界、变革国防安全和重新定义人际关系。10月27-29日,五大主题舞台将在旧金山呈现科技创新的未来图景。
西班牙研究团队提出了一种创新的AI自我纠错方法SSC,让人工智能学会识别和修正规则中的漏洞。当AI发现自己在钻空子获得高分时,它会反思规则的合理性并主动改进。实验显示这种方法将AI的"钻空子"行为从50-70%降低到3%以下,同时提升了回答质量。这项技术有望让AI从被动执行指令转变为能够质疑和改进指令的智能协作伙伴。
英超联赛与微软达成五年战略合作伙伴关系,推出AI驱动的Premier League Companion服务,为全球球迷提供个性化体验。该服务利用Azure OpenAI技术,整合30多个赛季的统计数据、30万篇文章和9000个视频,帮助球迷发现和了解更多内容。未来还将为Fantasy Premier League引入个人助理经理功能,并通过Azure AI优化比赛直播体验和赛后分析。
这篇文章详细解析了Long、Shelhamer和Darrell在2015年CVPR会议上发表的开创性研究"全卷积网络用于语义分割"。文章以通俗易懂的方式,将这项复杂的技术比作艺术家的绘画过程,解释了如何让计算机不仅识别图像中有什么物体,还能精确标出每个物体的位置和边界。研究团队通过将传统分类网络改造为全卷积形式,并巧妙运用上采样和跳跃连接技术,实现了高效准确的像素级图像理解。这一突破为自动驾驶、医学影像和增强现实等领域带来了革命性变化,奠定了现代计算机视觉的重要基础。