FutureHouse,一个由 Eric Schmidt 支持的非营利组织,旨在未来十年内打造一位 “AI 科学家”,现已推出其首个重大产品:一个平台和 API,内置 AI 工具,用以支持科学研究工作。
目前有许多初创企业竞相开发面向科学领域的 AI 研究工具,其中一些背后拥有大量风险投资资金的支持。科技巨头似乎也看好 AI 在科学中的应用。今年早些时候,Google 推出了 “AI co-scientist”,这是一款据称能够帮助科学家提出假设并制定实验研究计划的 AI。
OpenAI 和 Anthropic 的 CEO 均表示,AI 工具可以大幅加速科学发现,尤其在医学领域。然而,由于现阶段 AI 的不可靠性,许多研究人员并不认为它在引导科学进程方面特别有用。
FutureHouse 于周四发布了四款 AI 工具:Crow、Falcon、Owl 和 Phoenix。Crow 能搜索科学文献并回答相关问题;Falcon 可以进行更深入的文献搜索,包括科学数据库;Owl 用于查找某一特定领域内的既有研究;而 Phoenix 则利用工具帮助规划化学实验。
FutureHouse 在博客文章中写道:“与其他 AI 不同,FutureHouse 的 AI 可访问大量高质量的开放获取论文及专门的科学工具,它们具备透明的推理过程,并采用多阶段流程对每个信息源进行更深入的考量……通过将这些 AI 串联起来,实现规模化,科学家们可以大大加速科学发现的步伐。”
然而具有讽刺意味的是,FutureHouse 迄今尚未利用其 AI 工具取得任何科学突破或发现全新的成果。
开发 “AI 科学家” 的一大挑战在于需要预见无数个干扰因素。AI 在需要广泛探索、缩小大量可能性清单的场景中可能会派上用场,但目前尚不明确 AI 是否具备那种跳出常规框架、从而实现真正突破性的解决问题能力。
到目前为止,专为科学设计的 AI 系统的成果大多令人失望。2023 年,Google 曾表示借助其名为 GNoME 的 AI 合成了大约 40 种新材料,但外部分析显示,这些材料中没有一项实际上是全新的。
AI 的技术缺陷和风险(例如其容易出现“幻觉”的倾向)也使科学家们对将其用于严肃研究持谨慎态度。即便是设计良好的研究,也可能因表现不佳的 AI 而受到污染,其难以执行高精度工作。
实际上,FutureHouse 也承认其 AI 工具——特别是 Phoenix——可能会出错。
公司在博客文章中写道:“我们现在发布这些工具是为了快速迭代,请在使用过程中提供反馈。”
好文章,需要你的鼓励
初创公司Positron获得5160万美元A轮融资,推出专门针对AI推理的Atlas芯片。该公司声称其芯片在性能功耗比和成本效益方面比英伟达H100高出2-5倍,并已获得Cloudflare等企业客户采用。Positron专注于内存优化设计,无需液体冷却,可直接部署在现有数据中心。公司计划2026年推出支持16万亿参数模型的下一代Titan平台。
这项由Midjourney团队主导的研究解决了AI创意写作中的关键问题:如何让AI既能写出高质量内容,又能保持创作的多样性和趣味性。通过引入"偏差度"概念和开发DDPO、DORPO两种新训练方法,他们成功让AI学会从那些被传统方法忽视的优秀独特样本中汲取创意灵感,最终训练出的模型在保持顶级质量的同时,创作多样性接近人类水平,为AI创意写作开辟了新方向。
忽视智能体AI的潜力,特别是其对现代化数据基础设施的需求,面临着与忽视互联网的零售商相同的生存风险。关键不在于是否投资,而在于如何确保投资转化为可衡量的现实收益。企业需要超越AI试验阶段,明确业务目标,从治理开始构建ROI模型。成功的组织在整个技术栈中嵌入智能体,从面向客户的应用到内部治理系统。通过强化数据治理、减少重复工具和统一平台,AI的ROI将从理论变为现实。
上海AI实验室联合多所高校开发出VisualPRM系统,这是首个专门用于多模态推理的过程奖励模型。该系统能像老师批改作业一样逐步检查AI的推理过程,显著提升了AI在视觉推理任务上的表现。研究团队构建了包含40万样本的训练数据集和专门的评估基准,实现了在七个推理基准上的全面性能提升,即使是最先进的大型模型也获得了5.9个百分点的改进。