FutureHouse,一个由 Eric Schmidt 支持的非营利组织,旨在未来十年内打造一位 “AI 科学家”,现已推出其首个重大产品:一个平台和 API,内置 AI 工具,用以支持科学研究工作。
目前有许多初创企业竞相开发面向科学领域的 AI 研究工具,其中一些背后拥有大量风险投资资金的支持。科技巨头似乎也看好 AI 在科学中的应用。今年早些时候,Google 推出了 “AI co-scientist”,这是一款据称能够帮助科学家提出假设并制定实验研究计划的 AI。
OpenAI 和 Anthropic 的 CEO 均表示,AI 工具可以大幅加速科学发现,尤其在医学领域。然而,由于现阶段 AI 的不可靠性,许多研究人员并不认为它在引导科学进程方面特别有用。
FutureHouse 于周四发布了四款 AI 工具:Crow、Falcon、Owl 和 Phoenix。Crow 能搜索科学文献并回答相关问题;Falcon 可以进行更深入的文献搜索,包括科学数据库;Owl 用于查找某一特定领域内的既有研究;而 Phoenix 则利用工具帮助规划化学实验。
FutureHouse 在博客文章中写道:“与其他 AI 不同,FutureHouse 的 AI 可访问大量高质量的开放获取论文及专门的科学工具,它们具备透明的推理过程,并采用多阶段流程对每个信息源进行更深入的考量……通过将这些 AI 串联起来,实现规模化,科学家们可以大大加速科学发现的步伐。”
然而具有讽刺意味的是,FutureHouse 迄今尚未利用其 AI 工具取得任何科学突破或发现全新的成果。
开发 “AI 科学家” 的一大挑战在于需要预见无数个干扰因素。AI 在需要广泛探索、缩小大量可能性清单的场景中可能会派上用场,但目前尚不明确 AI 是否具备那种跳出常规框架、从而实现真正突破性的解决问题能力。
到目前为止,专为科学设计的 AI 系统的成果大多令人失望。2023 年,Google 曾表示借助其名为 GNoME 的 AI 合成了大约 40 种新材料,但外部分析显示,这些材料中没有一项实际上是全新的。
AI 的技术缺陷和风险(例如其容易出现“幻觉”的倾向)也使科学家们对将其用于严肃研究持谨慎态度。即便是设计良好的研究,也可能因表现不佳的 AI 而受到污染,其难以执行高精度工作。
实际上,FutureHouse 也承认其 AI 工具——特别是 Phoenix——可能会出错。
公司在博客文章中写道:“我们现在发布这些工具是为了快速迭代,请在使用过程中提供反馈。”
好文章,需要你的鼓励
Nvidia公布2026财年一季度业绩,营收441亿美元,同比增长69%;新AI超算与显卡产品陆续亮相,尽管出口管控对H20业务造成影响,但整体AI市场前景依然乐观。
Cerebras WSE 芯片拥有 40 亿晶体管,推理速度达到 NVIDIA 集群的约 2.5 倍,刷新了全球 AI 推理速度记录,为复杂 AI 代理应用提供高性能计算支持。
这项研究提出了"B-score",一种新指标用于检测大语言模型中的偏见。研究人员发现,当模型能看到自己之前对同一问题的回答时(多轮对话),它能够减少偏见并给出更平衡的答案。B-score计算单轮与多轮对话中答案概率的差异,无需外部标注即可识别有偏见的回答。实验证明,将B-score用于回答验证可显著提高准确率,在标准基准测试上平均提升2.9个百分点。这一发现不仅提供了实用工具,还表明大语言模型具有自我纠正能力。
这篇论文探讨了强化微调(RFT)如何增强多模态大语言模型(MLLMs)的推理能力。研究指出,作为一种后训练算法,RFT已在各种模态(视觉、音频、GUI等)、任务和领域中取得显著成功。论文详细分析了现有工作,总结了RFT在多模态推理中的五大成功:多样化模态应用、广泛的任务与领域支持、算法改进、丰富的评测基准和完善的工程框架。作者还提出五个未来研究方向:提升跨模态泛化能力、结合不同奖励范式、加强安全性研究、探索数据增强技术以及开发更优算法和应用场景。