Google 的 DeepMind 研究部门宣称,其最新 AI 代理标志着利用该技术解决数学和科学重大问题的一大步。该系统被称为 AlphaEvolve,是基于公司的 Gemini 大语言模型 ( LLMs ),并加入了一种“进化论”方法,用于评估和改进各类应用场景下的算法。
AlphaEvolve 本质上是一个 AI 编程代理,但它远超标准的 Gemini 聊天机器人。当您与 Gemini 对话时,总存在幻觉风险,即由于底层技术的非确定性,AI 可能凭空捏造细节。而 AlphaEvolve 则采用了一种独特的方法,在处理复杂算法问题时提高了准确性。
据 DeepMind 介绍,这款 AI 采用了一套自动评估系统。当研究人员与 AlphaEvolve 互动时,他们会输入一个问题以及可能的解决方案和探索方向。该模型利用了高效的 Gemini Flash 和更注重细节的 Gemini Pro,生成多种可能的解决方案,然后每个方案都会由评估器进行分析。通过进化框架,AlphaEvolve 能够专注于最优解并不断改进。
来源: Google DeepMind
该公司过去的许多 AI 系统,例如用于蛋白质折叠的 AlphaFold,都在单一知识领域内进行了大量训练。然而,AlphaEvolve 则展现出更大的动态性。DeepMind 表示,AlphaEvolve 是一款通用型 AI,能够协助任何编程或算法问题的研究。Google 已经开始在其庞大的业务体系中部署该系统,并取得了积极成果。
团队已经将 AlphaEvolve 部署在 Google Borg 集群管理系统上,用于管理其数据中心。该 AI 建议对调度启发式算法进行修改,这一改变已被采纳,使 Google 全球计算资源节约了 0.7% 。对于 Google 这样规模的企业来说,这是一项显著的财务效益。
此外,AlphaEvolve 或将使生成式 AI 的运作更为高效,而这正是实现该技术商业价值的必要条件。生成系统的内部运作依赖于矩阵乘法操作。历史上,数学家 Volker Strassen 于 1969 年提出了最有效的 4×4 复数矩阵乘法方法,但 DeepMind 表示,AlphaEvolve 已发现了一种更高效的新算法。DeepMind 过去曾通过像 AlphaTensor 这样专注领域的 AI 代理处理这一问题,尽管 AlphaEvolve 是一款通用型 AI,但其解决方案优于 AlphaTensor。
Google 的下一代 Tensor 处理硬件也将从 AlphaEvolve 中受益。DeepMind 报告称,该 AI 对芯片所使用的 Verilog 硬件描述语言进行了修改,剔除了不必要的比特,从而提升了效率。Google 目前仍在验证这一改动,但预计这将成为即将推出的处理器的一部分。
目前,只有 Google 能够调试 AlphaEvolve。虽然其耗用的计算资源比 AlphaTensor 少,但由于系统的复杂性,目前仍不对外公开。未来情况可能会有所变化,而这种高效的评估方法也有望被整合到更小型的科研 AI 工具中。
好文章,需要你的鼓励
Writer首席执行官May Habib指出,企业在构建和扩展AI智能体时面临重大挑战。智能体在构建、运行和改进方式上与传统软件截然不同,需要抛弃传统软件开发生命周期。智能体不会可靠地遵循规则,而是结果导向、具备解释和适应能力。企业需要采用目标导向方法,设计业务逻辑蓝图而非工作流程。质量保证也需要评估非二元行为和实际应用表现。智能体维护需要新的版本控制系统,涵盖提示、模型设置等所有影响行为的因素。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。
Salesforce首席执行官马克·贝尼奥夫表示,公司正大力推进人工智能应用,AI代理现在承担了公司30%至50%的工作。他认为员工应适应AI替代人工的趋势,转向更高价值的工作。然而,这一变化导致约1000名员工被裁,虽然公司计划招聘同等数量新员工,但主要专注于销售AI技术。这一趋势在科技行业普遍存在,今年已有超过63000个科技岗位消失,AI被认为是重要原因之一。
Skywork AI首次在软件工程领域验证数据规模效应,开发的Skywork-SWE-32B模型在SWE-bench Verified基准测试中达到38.0%准确率(使用测试时缩放技术可达47.0%),创下开源模型新纪录。研究构建了包含10169个验证实例的大规模数据集,证明增加高质量训练数据能持续提升AI软件修复能力,为开源软件工程AI发展提供重要突破。