在微软推出Copilot+ PC一年后,我们终于开始了解到设备端NPU与微软全功能AI增强操作系统的潜力所在。尽管微软的Recall功能遭遇了重大挫折,但在初次发布一年后的今天,三大主要芯片厂商都已支持Recall等AI增强功能。
然而,我们仍然缺乏足够的第三方开发者基于微软在Windows 11中启用的功能进行开发——这是实现真正AI加速体验、充分利用NPU的关键。微软Build 2025大会通过一系列新公告,在推动行业和Windows生态系统发展方面迈出了更大步伐。
新AI功能与工具
微软将此前的Windows Copilot Runtime升级为Windows AI Foundry。AI Foundry的核心是Windows ML,这是DirectML的演进版本,此前是Copilot Runtime的核心。微软表示,Windows ML使开发者能够"自带模型",并在完整的芯片厂商生态系统中高效部署。微软还宣布,WinML不仅支持Copilot+ PC,还将支持从入门级笔记本到高端AI工作站的全系列PC,利用任何可用的AI加速硅片。
微软还宣布将把Anthropic的开源模型上下文协议和Agent2Agent协议嵌入Windows和其他Azure产品中。这些协议为AI代理与应用程序和服务的交互创建了标准化框架。微软还发布了名为NLWeb的新开源项目,旨在将代理用户体验扩展到互联网,弥合云端和本地设备之间的差距。
我赞赏微软这种更广泛的方法,尽管我也认为这为公司带来了更大的挑战。不过,这应该能让AI功能在更多PC上运行。微软的策略正从仅NPU加速转向更多地讨论GPU和CPU。然而,开放神经网络交换AI运行时仍是Windows ML运行时的核心,这意味着为了ONNX兼容性可能仍会牺牲一些性能。
尽管如此,一些厂商表示英伟达新的WinML TensorRT EP比之前的Direct ML实现快两倍。我认为这是微软从一开始就应该采用的方法,但我不确定软件和硬件生态系统是否已经准备好部署这样的解决方案。最终,任何让开发者更容易部署AI功能而不依赖设备上AI硬件的方案,都对生态系统和整个行业有利。
新微软开发者工具
WSL(Windows Linux子系统)现已开源。虽然WSL于2016年推出,但在希望在Windows上运行Linux代码而无需启动虚拟机环境的开发者中稳步增长。WSL 2在2019年推出时进一步提升了受欢迎程度,但一些基本功能仍不可用。开发者社区的首要要求之一就是开源WSL以便于使用。我认为这一举措将使Windows成为更易于开发的平台,并鼓励更多开发者使用。
微软还推出了新的"高级Windows设置",此前称为"Windows开发者设置"。这个新版本为用户(无论是否为开发者)提供了对文件夹和文件显示方式以及版本控制工作方式的更多控制。微软表示,新的高级设置页面已在GitHub上开源,可通过Windows商店进行维护。
微软商店更新
微软希望继续发展微软商店,目前月活跃用户超过2.5亿。作为首要步骤之一,微软为个人开发者启用了免费账户注册。此前需要19美元费用——公司仍需支付此费用——但为个人消除这一障碍可能使年轻开发者能够无障碍创建应用。微软还为公司推出了新的商店FastTrack计划,帮助他们更快地向商店提交应用,包括免收19美元费用。
微软还承诺为商店提供更快、更透明的认证,以实现更快的周转、更清晰的指导和更少的重新提交。微软还宣布通过增强的Windows和商店搜索改善发现功能,这应该使启动用户已安装的应用更容易。
分析师观点
我认为微软在Windows的开源和AI方面继续朝着正确方向发展。Windows Copilot Runtime显然没有获得微软成功所需的关注度,公司显然听取了硬件和软件厂商的意见来创建WinML和AI Foundry。WinML和AI Foundry似乎更有能力实现本地AI加速应用,并最终兑现AI PC的诸多承诺。
随着AI领域的飞速发展,看到微软做出必要调整以确保Windows平台不被落下是令人欣慰的。我相信微软仍有最好的机会通过Windows和其应用套件在AI生产力方面取得优势。
好文章,需要你的鼓励
Birk Jernstrom在Shopify收购其上一家初创公司后,创立了货币化平台Polar,专注帮助开发者构建单人独角兽企业。该平台为开发者提供支付基础设施服务,处理全球计费和税务问题,让企业从第一天起就能销售在线产品和SaaS订阅服务。Polar获得了Accel领投的1000万美元种子轮融资,自2024年9月推出以来已吸引1.8万名客户。
这项研究提出了"高效探测"方法,解决了掩码图像建模AI难以有效评估的问题。通过创新的多查询交叉注意力机制,该方法在减少90%参数的同时实现10倍速度提升,在七个基准测试中均超越传统方法。研究还发现注意力质量与分类性能的强相关性,生成可解释的注意力图谱,展现出优异的跨域适应性。团队承诺开源全部代码,推动技术普及应用。
OpenAI首席执行官奥特曼证实,Meta为挖角OpenAI和谷歌DeepMind的顶尖AI研究人员,开出了超过1亿美元的薪酬包。然而,这些挖角努力基本失败。奥特曼表示,员工们认为OpenAI在实现AGI方面机会更大,公司文化更注重创新使命而非高薪。Meta正在组建超级智能团队,但面临OpenAI、Anthropic等竞争对手的激烈竞争。
伊利诺伊大学研究团队开发了CLAIMSPECT系统,通过层次化分解复杂争议、智能检索相关文献、多角度收集观点的方法,将传统的"真假"判断转变为多维度分析。该系统能够自动构建争议话题的分析框架,识别不同观点及其支撑证据,为科学和政治争议提供更全面客观的分析,已在生物医学和国际关系领域验证有效性。