如果你能够获得传统大语言模型的输出效果,同时能耗却降低10到20倍,会怎么样?
如果你能够在手机上直接运行强大的大语言模型,又会怎么样?
事实证明,新的设计理念正在推动新一代AI平台的发展,这些平台将节约能源,释放各种全新和改进的功能,同时重要的是,还能提供边缘计算能力。
什么是边缘计算?
边缘计算是指数据处理和其他工作负载在接近数据源的地方进行,换句话说,就是在终端设备上进行,比如数据收集硬件或用户的个人设备。
另一种描述方式是,边缘计算开始让我们从云时代回归,在云时代,人们意识到可以集中存储数据。是的,你可以使用这些供应商服务,让客户端免于处理本地系统,但这会产生传输成本,而且通常控制力较弱。如果你能够在硬件设备上本地运行操作,这将创造各种效率,包括与能源消耗和应对气候变化相关的效率。
新兴的液体基础模型正在崛起,它们从传统的基于Transformer的大语言模型设计创新发展为其他形式。
2024年9月,Carl Franzen在VentureBeat上发表的一篇文章涵盖了一些相关设计。我需要声明:我被列为Liquid AI的顾问,我认识MIT CSAIL实验室的很多研究人员,这项工作正在那里进行。但不要只听我的话,看看Franzen怎么说。
"新的LFM模型在性能上已经超越了同等规模的其他基于Transformer的模型,如Meta的Llama 3.1-8B和微软的Phi-3.5 3.8B,"他写道。"这些模型不仅在原始性能基准测试上具有竞争力,在运营效率方面也表现出色,使它们适用于各种用例,从金融服务、生物技术和消费电子等领域的企业级应用,到边缘设备的部署。"
项目负责人的更多见解
今年4月,Will Knight和Liquid AI的Ramin Hasani在IIA进行了一次访谈。
Hasani谈到了Liquid AI团队如何利用线虫(具体来说是秀丽隐杆线虫)的大脑开发模型。
他谈到了这些后Transformer模型在设备、汽车、无人机和飞机上的应用,以及在预测金融和预测医疗方面的应用。
他说,LFM可以完成GPT的工作,在设备上本地运行。
"它们能够听,也能够说话,"他说。
更多新发展
Hasani表示,自最近项目启动以来,Liquid AI一直在与大公司进行商业讨论,探讨如何将这项技术很好地应用于企业。
"人们关心隐私,关心AI的安全应用,也关心AI的低延迟应用,"他说。"这三个方面是企业无法从其他类型的AI公司那里获得价值的地方。"
在谈到创新者应该"内心是科学家"时,Hasani回顾了离线运行大语言模型的一些基本价值主张。
看,无需基础设施
围绕LFM的这次特定对话中得出的一个主要观点是,如果它们在设备上离线运行,你就不需要连接系统的扩展基础设施。你不需要数据中心或云服务,或任何类似的东西。
本质上,这些系统可以实现低成本、高性能,这只是人们谈论将"摩尔定律"概念应用于AI的一个方面。这意味着系统正在快速变得更便宜、更多样化、更易于管理。
因此,随着我们看到更智能的AI出现,请密切关注这种发展。
好文章,需要你的鼓励
CoreWeave发布AI对象存储服务,采用本地对象传输加速器(LOTA)技术,可在全球范围内高速传输对象数据,无出口费用或请求交易分层费用。该技术通过智能代理在每个GPU节点上加速数据传输,提供高达每GPU 7 GBps的吞吐量,可扩展至数十万个GPU。服务采用三层自动定价模式,为客户的AI工作负载降低超过75%的存储成本。
莫斯科高等经济学院研究员尼古拉·斯克里普科开发了IFEval-FC基准测试,专门评估大语言模型在函数调用中遵循格式指令的能力。研究发现,即使是GPT-5和Claude Opus 4.1等最先进模型,在处理看似简单的格式要求时准确率也不超过80%,揭示了AI在实际应用中的重要局限性。
谷歌DeepMind与核聚变初创公司CFS合作,运用先进AI模型帮助管理和改进即将发布的Sparc反应堆。DeepMind开发了名为Torax的专用软件来模拟等离子体,结合强化学习等AI技术寻找最佳核聚变控制方式。核聚变被视为清洁能源的圣杯,可提供几乎无限的零碳排放能源。谷歌已投资CFS并承诺购买其200兆瓦电力。
上海人工智能实验室联合多家机构推出MinerU2.5文档解析模型,仅用12亿参数就在文本、公式、表格识别等任务上全面超越GPT-4o等大型模型。该模型采用创新的两阶段解析策略,先进行全局布局分析再做局部精细识别,计算效率提升一个数量级。通过重新定义任务标准和构建高质量数据引擎,MinerU2.5能准确处理旋转表格、复杂公式、多语言文档等挑战性内容,为文档数字化提供了高效解决方案。