IDC发布了一份关于AI就绪数据存储基础设施(AI-RDSI)的研究报告,该报告由Hammerspace公司进行分发。
这份报告是四部分系列研究的第一部分,其他部分将涵盖客户之声、竞争格局以及市场规模和预测。
AI-RDSI文档的IDC观点部分指出,"不到一半的AI试点项目能够推进到生产阶段"。报告强调"组织必须从以数据为中心的角度来处理AI项目"。作者还表示"供应商必须准备好在合作伙伴和竞争对手的生态系统中运营,以提供全栈AI基础设施产品"。
AI-RDSI的定义为:一个能够支持AI工作负载数据需求的数据存储基础设施,包括数据摄取、处理、分析和部署的全生命周期。
IDC作者谈到了数据物流的概念,即数据从创建或摄取开始在组织数据处理环境中的整个流程,并用图表说明了这一概念。
AI系统需要单一的数据真实来源,要么"具备复制数据管理能力,要么在所有存储中建立单一统一的元数据环境"。
这种数据基础设施有五个主要属性:
性能 - 数据吞吐量、IOPS、延迟、网络带宽和性能密集型计算需求,报告指出"实现高吞吐量可能需要使用并行文件系统或并行NFS(pNFS)等技术"。
规模
服务级别 - 报告提到99.999%是常见的要求。
数据物流
数据信任
分析师深入探讨了每个部分的更多细节,并讨论了AI-RDSI本体论和软件分类法。他们最后为IT供应商和IT采购方提供了建议。最终总结指出"太多AI项目以失败告终...我们认为对存储基础设施关注不够,导致项目受到数据孤岛、数据质量差和存储性能不足的阻碍"。
IDC全球基础设施研究部基础设施软件平台研究副总裁Phil Goodwin在最后表示:"这项研究帮助IT供应商定义AI就绪数据存储产品要求,并帮助IT采购方识别适合其需求的解决方案"。
Hammerspace对这份IDC原创研究报告的内容非常认可,因此获得了转载许可。
评论
我们注意到IDC报告忽略了使用闪存硬件和GPU Direct for Objects的快速访问对象存储 - 如Cloudian、Scality和MinIO - 将对象存储定位为适合中等或较低性能需求的解决方案。
报告强调数据可用性的重要性:
以1PB数据和99.999%的可用性计算,0.001%的数据面临不可用风险;1PB的0.001% = 0.00001 x 1 x 10^15 = 1 x 10^10字节或10GB。
在对象存储领域,Scality的RING和Cloudian的Hyperstore提供14个9(99.999999999999%)的数据持久性和可用性,意味着只有1KB数据不可用,仅为10GB的0.00001%,这样的表现更好。
好文章,需要你的鼓励
CoreWeave发布AI对象存储服务,采用本地对象传输加速器(LOTA)技术,可在全球范围内高速传输对象数据,无出口费用或请求交易分层费用。该技术通过智能代理在每个GPU节点上加速数据传输,提供高达每GPU 7 GBps的吞吐量,可扩展至数十万个GPU。服务采用三层自动定价模式,为客户的AI工作负载降低超过75%的存储成本。
清华大学、新加坡国立大学等顶尖高校联合发布重大AI研究成果,创新性地提出变分推理框架解决AI推理训练中的偏见问题。该方法将AI思考过程分解为思维轨迹和答案两部分,通过"思考教练"机制避免AI偏向简单问题的毛病。实验显示在数学、编程等多个领域均有显著提升,为构建更智能可靠的AI系统奠定基础。
谷歌DeepMind与核聚变初创公司CFS合作,运用先进AI模型帮助管理和改进即将发布的Sparc反应堆。DeepMind开发了名为Torax的专用软件来模拟等离子体,结合强化学习等AI技术寻找最佳核聚变控制方式。核聚变被视为清洁能源的圣杯,可提供几乎无限的零碳排放能源。谷歌已投资CFS并承诺购买其200兆瓦电力。
新加坡国立大学等机构研究团队提出反馈条件策略(FCP),让AI直接从文字反馈学习而非转换为数字评分。该方法在数学和通用推理任务上表现优异,能处理复杂混合反馈,支持灵活的行为控制,避免了传统强化学习中的奖励黑客问题,为AI训练开辟了新路径。