开源向量数据库和搜索初创公司Qdrant开发了一款轻量级向量数据库,专为在机器人、自助终端、移动设备和其他嵌入式系统上本地运行而设计。
Qdrant Edge使开发者能够在边缘设备上本地运行混合和多模态搜索,无需连接服务器进程或后台线程。边缘设备通常资源受限,具有高延迟、有限计算能力和最小网络访问。Qdrant在其Edge产品中实现了云原生向量数据库的核心功能。向量数据库被生成式AI模型用于响应基于自然语言的用户请求。
Qdrant首席执行官兼联合创始人André Zayarni表示:"开发者需要在做出许多决策的地方运行基础设施——在设备本身上。Qdrant Edge是专为嵌入式AI设计的全新向量搜索引擎。它将本地搜索、确定性性能和多模态支持融入到最小的运行时占用空间中。"
Qdrant表示,Edge产品提供了对生命周期、内存使用和进程内执行的完全控制,无需后台服务。它将支持进程内执行、高级过滤以及与实时智能体工作负载的兼容性。预想的应用包括具有多模态传感器输入的机器人导航、智能零售自助终端和销售点系统上的本地检索,以及在移动或嵌入式硬件上运行的隐私优先助手。
Qdrant最初将其向量存储在底层的RocksDB键值存储中,但由于固有的压缩导致随机延迟峰值,并发现由于选项过多而难以调优。因此,它用Rust开发了自己的Gridstore键值存储。这具有数据层来在固定大小块中存储值以进行快速查找,掩码层来跟踪已使用和未使用的块而无需压缩,以及间隙层来管理空间分配。
Qdrant表示,它已经看到了机器人和移动AI开发者的早期关注,这些开发者希望进行本地部署并获得比连接到中央或云向量数据库更好的性能,以及需要边缘隐私优先AI的公司。
我们了解到,从自助终端开发者的角度来看,拥有能够响应客户自然语言查询的系统可能是有利的。
Qdrant的Edge产品现在通过私有测试版提供。构建机器人、设备助手或嵌入式推理管道的团队可以在此申请。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。