诺丁汉大学的一项研究表明,人工智能和机器学习可以预测过早死亡,从而彻底变革预防医疗领域。
诺丁汉大学医疗数据科学家和医生组成的团队,在一项针对40岁至69岁年龄段、50多万人的研究中,开发并测试了他们基于计算机的机器学习算法系统,以预测慢性病早期死亡的风险,称取得了一定的成果。
该团队称,他们的人工智能系统不仅“预测结果非常准确”,而且“表现得比当前由人类专家开发的标准预测方法更好”。这项研究发表在了PLOS ONE“医疗和生物医学领域的机器学习”系列专题中。
诺丁汉大学的研究人员利用了英国生物样本库(UK Biobank)在2006年至2010年间收集到的人员健康数据信息,并一直追踪到2016年。英国生物样本库是英国医疗研究的一项重要国家资源,其目标是改善对严重疾病、危及生命疾病的预防、诊断和治疗,包括癌症、心脏病、中风、糖尿病、关节炎、骨质疏松、眼部疾病、抑郁症和痴呆症等。目前已经有50万人参与该项目,提供了他们的血液、尿液和唾液样本供未来分析,以及他们个人的详细信息,并同意该项目对他们的健康状况进行持续追踪。
研究人员表示,他们通过这项对死亡率预测的新研究,推进了该领域的人工智能发展。诺丁汉大学流行病学和数据科学助理教授Stephen Weng博士说:“我们开发了一套独特的整体方法,通过机器学习来预测过早死亡的风险,从而在这一领域迈出了重要一步。”
“在严重疾病的预防中,预防性医疗措施越来越多地受到重视,因此多年来我们一直致力于提高对大众的计算机化健康风险评估准确性。大多数应用都集中在一个疾病领域,但预测不同疾病死亡结果是一个非常复杂的过程,特别是考虑到可能带来影响的环境因素和个体因素。”
Weng说,他们使用计算机构建新的风险预测模型,将各种地理因素、生物因素、临床和生活方式——包括每天对水果、蔬菜和肉类的消耗——纳入对个人的评估中。
“我们将预测结果与来自国家统计局、英国癌症登记以及医院事件记录的死亡率数据进行比照,发现机器学习算法在预测死亡方面比人类专家开发的标准预测模型更加准确。”
该研究中采用了“随机森林”和“深度学习”等人工智能和机器学习模型。Weng说,他们反对传统使用的基于年龄和性别的“Cox Regression”预测模型,因为这种模型在预测死亡率方面很不准确。
这项新研究是建立诺丁汉大学团队此前的研究基础之上,此前的研究表明,四种不同的人工智能算法——随机森林、逻辑回归、梯度增强和神经网络——在预测心血管疾病方面明显优于当前心脏病学指南中所使用的算法。
这项研究与当前最突出的研究领域(诊断和预后领域)保持一致,并且在这个领域机器学习也在快速普及中。传统上说,预后(prognosis)是依赖于统计数据进行预测的,例如,预测某人未来患心脏病的风险。这种方法已经被证明有较高的预测准确性,并且得到了各种验证研究的验证和复制。“因此,对于使用机器学习开发的应用和算法来说,挑战不仅在于增强传统方法所能实现的结果,还要以类似透明和可复制的方式开发和报告结果。”
作者这样写道:“在大数据时代,人们非常乐观地认为,机器学习可以彻底变革医疗领域,为临床医生提供诊断评估和个性化治疗决策的方法。机器学习技术依赖于机器引导的计算方法——而不是人类引导的数据分析——以便在更标准的统计方法中将函数与数据进行匹配。机器学习仍然可以使用我们熟知的模型例如逻辑回归,同时其他很多机器学习技术并不适用预先确定的方法。例如,人工神经网络会确定‘最佳函数’,有效地对不同变量之间所有复杂关系和非线性关系进行建模,同时最大程度上减少预测结果和观察结果之间的误差。”
使用标准方法的预后建模已经得到了公认,特别是用于预测患单一疾病的风险。作者这样写道:“我们最近的一项研究将机器学习方法用于常规初级医疗数据进行的预后建模,结果表明预测心血管疾病的准确性有所提高......机器学习还可以用于探索更复杂的、具有多因素因果关系的结果,例如过早死亡。”
诺丁汉大学团队表示,未来他们将致力于研究他们开发的人工智能算法是否适用于其他人群。他们希望继续探索将这些系统用于其他日常医疗中的方法。研究人员预测,在未来开发能够为个体患者提供个性化医疗和定制风险管理的工具方面,人工智能将发挥至关重要的作用。
好文章,需要你的鼓励
皮尤研究中心最新分析显示,谷歌搜索结果页面的AI概述功能显著降低了用户对其他网站的点击率。研究发现,没有AI回答的搜索点击率为15%,而有AI概述的搜索点击率降至8%。目前约五分之一的搜索会显示AI概述,问题类搜索中60%会触发AI回答。尽管谷歌声称AI概述不会影响网站流量,但数据表明用户看到AI生成的信息后更容易结束浏览,这可能导致错误信息的传播。
这项由清华大学等多所高校联合完成的研究首次系统性地解析了AI系统如何同时具备知识检索和深度推理能力。研究团队通过分析200多篇论文,揭示了从简单检索到协同推理的技术演进路径,并建立了全面的评估框架。这种"协同RAG推理系统"能够像人类研究者一样主动搜索信息、分析问题,为AI向真正智能助手的转变奠定了基础。
GlobalData研究显示,人工智能驱动的预测性维护正成为电力行业追求高可靠性和成本效益的关键组成部分。该技术结合数据分析、机器学习和实时监控,能够更准确预测设备未来状况,有望降低维护成本30%,提高设备可用性20%。GE Vernova、西门子等公司提供先进解决方案,而数字孪生技术、物联网和边缘计算等新兴技术正进一步提升维护策略的准确性和效率。
麦吉尔大学研究团队开发了DrafterBench,这是首个专门评估AI在工程技术图纸修改能力的测试平台。通过对1920个真实工程任务的测试,研究发现即使最先进的AI模型也只能达到80%的准确率,在处理复杂多步骤操作时表现不佳。该研究为工程领域的AI应用提供了重要的评估标准和发展方向。