谷歌首席执行官Sundar Pichai表示,谷歌正在努力使旗下的人工智能和机器学习模型更加透明,以此抵御系统的偏差。
Pichai提及一系列人工智能增强技术(https://blog.google/technology/developers/io19-helpful-google- everyone /)以及将更多的机器学习模型放在设备上的举动,而对于开发人员和数据科学家而言他说的重点则在于TCAV。 TCAV是概念激活向量测试(Testing with Concept Activation Vectors)的英文缩写(https://ai.google/research/pubs/pub47077)。简而言之,TCAV是一种可解释性的方法,可用于了解神经网络模型用来预测的信号。
理论上,TCAV具有理解信号可能表现出偏差的能力(https://github.com/tensorflow/tcav),因为这些信号会强调男性是否是有别于女性,信号还会表现出其他的问题,如种族、收入和位置。计算机科学家利用TCAV就可以看到价值概念到底有多高的价值(https://arxiv.org/abs/1711.11279)。
偏差是人工智能里的一个重要概念,一些学者呼吁引进更多的自我监管和法例(https://www.zdnet.com/article/why-businesses-will-have-to-audit-algorithms-ai-and-account-for-risk/)。此外,诸如IBM一类的行业参与者也在推动更大的透明度和具有监控算法层的软件,以达到了解算法是如何产生偏见的目的(https://www.zdnet.com/article/ibm-launches-tools -to-detect-ai-fairness-bias-and-open-sources-some-code /)。而与此同时,一些企业也在向着可解释人工智能方向努力(https://www.zdnet.com/article/capital-one-ai-chief-sees-path- to-explainable-ai /)。对于谷歌来说,透明度很重要,因为谷歌的技术包括Duplex和下一代谷歌智能助理(https://www.zdnet.com/article/google-sees-next-gen-duplex- assistant-as-next-step-in-taking-over-your-tasks/ )。这些工具现在为用户执行任务时的功能越来越多。模型的透明度可能意味着对谷歌技术的更多信任和使用。
最关键的一点:透明度和防范偏差对于企业以及为我们提供大多数模型即服务的所有云提供商都至关重要(https://www.zdnet.com/article/top-cloud- providers -2019-aws-microsoft-azure-google-cloud-ibm-makes-hybrid-move-salesforce-dominates-saas/)。
TCAV的使用不需要重新训练模型,TCAV做的是解剖模型即说明模型为何做出某种决定。例如,识别斑马的模型可以使用更高级别的概念来识别斑马。来看一个示例:
Pichai表示,“要为每个人建立一个更有帮助的谷歌就意味着解决偏差问题。你需要知道模型是如何工作的,并且清楚其中可能存在偏差。为此,我们将提高模型的透明度。”
他补充表示,谷歌的人工智能团队正在开发TCAV,这项技术可以允许模型使用更多的高级概念。TCAV的目标是将支撑模型的变量表现出来。“还有做很多的工作,但我们奉行的原则是打造适合所有人的人工智能。”Pichai表示。
由于谷歌能够将模型的大小缩小到可以驻留在设备上,谷歌现在正朝着降低延迟及使用联合学习等技术减少数据使用并增强用户隐私的方向努力。
好文章,需要你的鼓励
法国人工智能公司Mistral AI宣布完成17亿欧元(约20亿美元)C轮融资,由荷兰半导体设备制造商ASML领投。此轮融资使Mistral估值从去年的60亿美元翻倍至137亿美元。英伟达、DST Global等知名投资机构参投。作为欧洲领先的AI开发商,Mistral凭借先进的多语言大模型与OpenAI等美国公司竞争,其聊天机器人Le Chat具备语音模式等功能。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
VAST Data收购了成立仅数月的初创公司Red Stapler,该公司由NetApp资深团队创立。Red Stapler创始人兼CEO Jonsi Stefansson将担任VAST云解决方案总经理,负责超大规模云战略。Red Stapler拥有6名开发人员,开发了跨SaaS交付、API集成、监控等功能的云控制平面和服务交付平台,将加速VAST AI OS在超大规模和多云环境中的部署,深化与全球领先超大规模云服务商的合作关系。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。