谷歌首席执行官Sundar Pichai表示,谷歌正在努力使旗下的人工智能和机器学习模型更加透明,以此抵御系统的偏差。
Pichai提及一系列人工智能增强技术(https://blog.google/technology/developers/io19-helpful-google- everyone /)以及将更多的机器学习模型放在设备上的举动,而对于开发人员和数据科学家而言他说的重点则在于TCAV。 TCAV是概念激活向量测试(Testing with Concept Activation Vectors)的英文缩写(https://ai.google/research/pubs/pub47077)。简而言之,TCAV是一种可解释性的方法,可用于了解神经网络模型用来预测的信号。
理论上,TCAV具有理解信号可能表现出偏差的能力(https://github.com/tensorflow/tcav),因为这些信号会强调男性是否是有别于女性,信号还会表现出其他的问题,如种族、收入和位置。计算机科学家利用TCAV就可以看到价值概念到底有多高的价值(https://arxiv.org/abs/1711.11279)。
偏差是人工智能里的一个重要概念,一些学者呼吁引进更多的自我监管和法例(https://www.zdnet.com/article/why-businesses-will-have-to-audit-algorithms-ai-and-account-for-risk/)。此外,诸如IBM一类的行业参与者也在推动更大的透明度和具有监控算法层的软件,以达到了解算法是如何产生偏见的目的(https://www.zdnet.com/article/ibm-launches-tools -to-detect-ai-fairness-bias-and-open-sources-some-code /)。而与此同时,一些企业也在向着可解释人工智能方向努力(https://www.zdnet.com/article/capital-one-ai-chief-sees-path- to-explainable-ai /)。对于谷歌来说,透明度很重要,因为谷歌的技术包括Duplex和下一代谷歌智能助理(https://www.zdnet.com/article/google-sees-next-gen-duplex- assistant-as-next-step-in-taking-over-your-tasks/ )。这些工具现在为用户执行任务时的功能越来越多。模型的透明度可能意味着对谷歌技术的更多信任和使用。
最关键的一点:透明度和防范偏差对于企业以及为我们提供大多数模型即服务的所有云提供商都至关重要(https://www.zdnet.com/article/top-cloud- providers -2019-aws-microsoft-azure-google-cloud-ibm-makes-hybrid-move-salesforce-dominates-saas/)。
TCAV的使用不需要重新训练模型,TCAV做的是解剖模型即说明模型为何做出某种决定。例如,识别斑马的模型可以使用更高级别的概念来识别斑马。来看一个示例:
Pichai表示,“要为每个人建立一个更有帮助的谷歌就意味着解决偏差问题。你需要知道模型是如何工作的,并且清楚其中可能存在偏差。为此,我们将提高模型的透明度。”
他补充表示,谷歌的人工智能团队正在开发TCAV,这项技术可以允许模型使用更多的高级概念。TCAV的目标是将支撑模型的变量表现出来。“还有做很多的工作,但我们奉行的原则是打造适合所有人的人工智能。”Pichai表示。
由于谷歌能够将模型的大小缩小到可以驻留在设备上,谷歌现在正朝着降低延迟及使用联合学习等技术减少数据使用并增强用户隐私的方向努力。
好文章,需要你的鼓励
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。