以色列计算机芯片制造商Hailo Technologies试图利用一款针对深度学习工作负载定制的新型处理器来破解人工智能世界。
专注于汽车行业的Hailo公司表示,该芯片能够让设备在网络运行“复杂”的深度学习应用,而以前这些应用智能托管在云数据中心。
Hailo表示,这个比1便士还小的处理器是从零开始设计的,采用了重新设计的内存、控制和计算架构组件,此外还附带了一个软件开发工具包,让开发者可以开发针对硬件定制的应用。
Hailo首席执行官Orr Danon表示:“我们迫切需要一种类似的架构来取代过去的处理器,使深度学习能够在边缘运行设备。”
Hailo特别强调了该芯片的性能,特别是功效。Hailo引用了ResNet-50基准测试的初步结果,该测试将Hailo-8TM芯片与Nvidia Xavier AGX进行了比较,后者也是针对人工智能工作负载设计的。Hailo表示,根据测试结果显示,Hailo-8在执行相同任务时的功耗几乎减少了20倍。
“通过设计一种依赖于神经网络核心特性的架构,边缘设备现在全面运行深度学习的表现要比传统解决方案更高效,、更有效、更具可持续性,同时显着降低成本。”
不过Moor Insights&Strategy分析师Patrick Moorhead表示,这种专用计算芯片通常会存在一个问题。
“问题是编程能力非常有限,应用范围很窄。这是一种经典的ASIC与CPU、GPU和FPGA的对比。此外,我对于这种对比持怀疑态度,因为没有考虑到Nvidia的最新更新。”
尽管存在质疑,但Hailo似乎已经赢得了一些发展势头。Hailo表示,目前正在与汽车行业一些正在研究先进驾驶员辅助系统的合作伙伴、致力于智能城市和智能家居的企业一起测试Hailo-8TM。
好文章,需要你的鼓励
新加坡人工智能机构与阿里云发布全新大语言模型Qwen-Sea-Lion-v4,专门针对东南亚语言和文化特色进行优化。该模型结合阿里云Qwen3-32B基础模型和大量东南亚地区数据集,在东南亚语言模型评估榜单中位居开源模型首位。模型支持119种语言,能在32GB内存的消费级笔记本上运行,采用字节对编码技术更好处理非拉丁文字,并具备3.2万词元上下文长度,可执行文档级推理和摘要任务。
中科大联合快手等机构推出VR-Thinker技术,首次实现AI视频评判员的"边看边想"能力。该系统通过主动选择关键画面、智能记忆管理和三阶段训练,在视频质量评估准确率上达到75%-82%,特别擅长处理长视频场景,为AI视频生成的质量控制提供了突破性解决方案。
AI智能体是下一代业务自动化工具,不仅能对话交流,还能执行复杂任务。与ChatGPT聊天机器人不同,它们可在最少人工干预下规划并完成工作。文章介绍了五个高影响力应用:自动化客户服务解决方案、销售CRM管理、合规自动化、招聘筛选与排程、市场情报报告。这些应用都具有重复性工作流程、依赖结构化数据、遵循可预测规则等特点,能够释放员工宝贵时间用于更有价值的工作。
微软研究院发布BitDistill技术,通过三阶段优化将大型语言模型压缩至1.58位精度,在保持性能的同时实现10倍内存节省和2.65倍速度提升。该技术包括模型结构稳定化、持续预训练适应和知识蒸馏传承三个关键步骤,解决了模型量化中的性能衰减和规模化问题,为AI模型在资源受限设备上的高效部署提供了新方案。