以色列计算机芯片制造商Hailo Technologies试图利用一款针对深度学习工作负载定制的新型处理器来破解人工智能世界。
专注于汽车行业的Hailo公司表示,该芯片能够让设备在网络运行“复杂”的深度学习应用,而以前这些应用智能托管在云数据中心。
Hailo表示,这个比1便士还小的处理器是从零开始设计的,采用了重新设计的内存、控制和计算架构组件,此外还附带了一个软件开发工具包,让开发者可以开发针对硬件定制的应用。
Hailo首席执行官Orr Danon表示:“我们迫切需要一种类似的架构来取代过去的处理器,使深度学习能够在边缘运行设备。”
Hailo特别强调了该芯片的性能,特别是功效。Hailo引用了ResNet-50基准测试的初步结果,该测试将Hailo-8TM芯片与Nvidia Xavier AGX进行了比较,后者也是针对人工智能工作负载设计的。Hailo表示,根据测试结果显示,Hailo-8在执行相同任务时的功耗几乎减少了20倍。
“通过设计一种依赖于神经网络核心特性的架构,边缘设备现在全面运行深度学习的表现要比传统解决方案更高效,、更有效、更具可持续性,同时显着降低成本。”
不过Moor Insights&Strategy分析师Patrick Moorhead表示,这种专用计算芯片通常会存在一个问题。
“问题是编程能力非常有限,应用范围很窄。这是一种经典的ASIC与CPU、GPU和FPGA的对比。此外,我对于这种对比持怀疑态度,因为没有考虑到Nvidia的最新更新。”
尽管存在质疑,但Hailo似乎已经赢得了一些发展势头。Hailo表示,目前正在与汽车行业一些正在研究先进驾驶员辅助系统的合作伙伴、致力于智能城市和智能家居的企业一起测试Hailo-8TM。
好文章,需要你的鼓励
Xbox 部门推出了名为 Muse 的生成式 AI 模型,旨在为游戏创造视觉效果和玩法。这一举措反映了微软全面拥抱 AI 技术的战略,尽管游戏开发者对 AI 持谨慎态度。Muse 不仅可能提高游戏开发效率,还有望实现老游戏的现代化改造,但其实际效果和对行业的影响仍有待观察。
Sonar收购AutoCodeRover,旨在通过自主AI代理增强其代码质量工具。这项收购将使Sonar客户能够自动化调试和问题修复等任务,让开发者将更多时间用于改进应用程序而非修复bug。AutoCodeRover的AI代理能够自主修复有问题的代码,将与Sonar的工具集成,提高开发效率并降低成本。
人工智能正在推动数据中心的变革。为满足 AI workload 的需求,数据中心面临前所未有的电力消耗增长、散热压力和设备重量挑战。应对这些挑战需要创新的解决方案,包括 AI 专用硬件、可再生能源、液冷技术等。同时,数据中心还需平衡监管压力和社区关切。未来数据中心的发展将决定 AI 技术能否实现其变革性潜力。