以色列计算机芯片制造商Hailo Technologies试图利用一款针对深度学习工作负载定制的新型处理器来破解人工智能世界。
专注于汽车行业的Hailo公司表示,该芯片能够让设备在网络运行“复杂”的深度学习应用,而以前这些应用智能托管在云数据中心。
Hailo表示,这个比1便士还小的处理器是从零开始设计的,采用了重新设计的内存、控制和计算架构组件,此外还附带了一个软件开发工具包,让开发者可以开发针对硬件定制的应用。
Hailo首席执行官Orr Danon表示:“我们迫切需要一种类似的架构来取代过去的处理器,使深度学习能够在边缘运行设备。”
Hailo特别强调了该芯片的性能,特别是功效。Hailo引用了ResNet-50基准测试的初步结果,该测试将Hailo-8TM芯片与Nvidia Xavier AGX进行了比较,后者也是针对人工智能工作负载设计的。Hailo表示,根据测试结果显示,Hailo-8在执行相同任务时的功耗几乎减少了20倍。
“通过设计一种依赖于神经网络核心特性的架构,边缘设备现在全面运行深度学习的表现要比传统解决方案更高效,、更有效、更具可持续性,同时显着降低成本。”
不过Moor Insights&Strategy分析师Patrick Moorhead表示,这种专用计算芯片通常会存在一个问题。
“问题是编程能力非常有限,应用范围很窄。这是一种经典的ASIC与CPU、GPU和FPGA的对比。此外,我对于这种对比持怀疑态度,因为没有考虑到Nvidia的最新更新。”
尽管存在质疑,但Hailo似乎已经赢得了一些发展势头。Hailo表示,目前正在与汽车行业一些正在研究先进驾驶员辅助系统的合作伙伴、致力于智能城市和智能家居的企业一起测试Hailo-8TM。
好文章,需要你的鼓励
在2026年CES展会上,一款名为Sweekar的AI电子宠物亮相,被誉为90年代经典Tamagotchi的完美继承者。这款智能宠物从蛋形开始,随着成长会物理性变大,经历婴儿期、青少年期到成年期的完整生命周期。每个阶段都有不同的护理需求和互动方式,从基础语言学习到形成独特个性。与原版相比,Sweekar融入了先进AI技术,提供更丰富的长期体验。该产品将通过Kickstarter众筹,售价150美元。
瑞士ETH苏黎世联邦理工学院等机构联合开发的WUSH技术,首次从数学理论层面推导出AI大模型量化压缩的最优解。该技术能根据数据特征自适应调整压缩策略,相比传统方法减少60-70%的压缩损失,实现接近零损失的模型压缩,为大模型在普通设备上的高效部署开辟了新路径。
西班牙CTIC RuralTech创新中心运用AI等前沿技术解决农业面临的气候变化等重大挑战。通过气候模拟系统和土地使用智能分析,农户可以监测作物、预测不同种植条件下的结果,如同拥有时光机器。草莓生产商利用模拟器预测疾病影响和气候变化效应,奶酪制造商则用AI分析牛奶数据,确定最适合生产特定奶酪的原料。这些技术应用大幅提高了农业可持续性和效率。
弗吉尼亚大学团队创建了Refer360数据集,这是首个大规模记录真实环境中人机多模态交互的数据库,涵盖室内外场景,包含1400万交互样本。同时开发的MuRes智能模块能让机器人像人类一样理解语言、手势和眼神的组合信息,显著提升了现有AI模型的理解准确度,为未来智能机器人的广泛应用奠定了重要基础。