如今,大多数组织都在准备迎接一个人工智能无处不在的世界。这种发展需要业务和技术领导者以对新技术能力、利用新技术的技术技能的理解来装备他们的组织,并关注传统IT工作流的新方法。但缺乏人工智能技能是采用人工智能的最大障碍之一。尽管从大学毕业的专业数据科学家和人工智能从业者的数量达到了创纪录的水平,但企业在寻找和吸引优秀人才方面仍然面临着巨大的困难,这使得人工智能提升技能项目成为优先考虑的项目。
对于一个组织来说,对人工智能世界来说,提高技能意味着什么?
每一家企业最终都将成为一个人工智能企业。 每个企业都知道它需要提高员工的人工智能技能。 然而,各组织难以确定人工智能技能的提高意味着什么,以及必须采取哪些具体行动来发展这些技能。 对于一个组织来说,对人工智能世界来说,提高技能意味着什么?
人工智能并不是单一的。 它不是由一组技能定义的,也不是由组织中的单一角色定义的。
有些技能是相对简单和基础的,必须在整个组织中广泛发展。 另一些则更为复杂,集中在较小的高技能专业群体中。 了解具有多种技能的多个角色如何在一个以最终结果为重点的统一框架中对其工作进行调整和编排是至关重要的。
建立人工智能知识、上下文人工智能知识和人工智能解决方案构建能力
开发提高员工技能的程序的组织应该从所有人的基本要素开始,深入到特定角色的更复杂的专业化层次,重点关注技能进步。 我们看到这种技能的进步是由三个主要层次构成的:人工智能知识、上下文人工智能知识和人工智能解决方案构建能力。

人工智能扫盲
这些技能应在整个组织中得到广泛发展,重点是对数据的概念理解、与启用人工智能或由人工智能驱动的工具进行交互的能力以及在组织中为人工智能确定机会的能力。
这些目标应针对技术和非技术专业人员,他们应能够:
上下文人工智能知识
下一层次的技能需要拥抱人工智能技术能力并将其注入其他领域。 重点是利用人工智能技术开发领域战略,管理输入和使用预构建的人工智能模型的输出。 在这一阶段,一些技能应该在技术和非技术团队中开发,与开发、数据工程和数据科学家一起开发。
各组织需要能够:
构建人工智能解决方案
下一阶段的技能侧重于构建 AI解决方案和开发管理端到端 AI生产流程所需的技能。 数据科学角色是人工智能生产周期的核心,其他业务和技术利益相关者在不同阶段扮演着重要角色。 数据科学家及其相关利益攸关方通常:
人工智能可以为组织带来巨大的机会和利益,这需要技能开发计划,以确保一致性和有意的结果。 人工智能技能发展的指令性方法是成功的关键。
了解更多IBM 数据与AI解决方案请访问:
好文章,需要你的鼓励
Anthropic发布SCONE-bench智能合约漏洞利用基准测试,评估AI代理发现和利用区块链智能合约缺陷的能力。研究显示Claude Opus 4.5等模型可从漏洞中获得460万美元收益。测试2849个合约仅需3476美元成本,发现两个零日漏洞并创造3694美元利润。研究表明AI代理利用安全漏洞的能力快速提升,每1.3个月翻倍增长,强调需要主动采用AI防御技术应对AI攻击威胁。
NVIDIA联合多所高校开发的SpaceTools系统通过双重交互强化学习方法,让AI学会协调使用多种视觉工具进行复杂空间推理。该系统在空间理解基准测试中达到最先进性能,并在真实机器人操作中实现86%成功率,代表了AI从单一功能向工具协调专家的重要转变,为未来更智能实用的AI助手奠定基础。
Spotify年度总结功能回归,在去年AI播客功能遭遇批评后,今年重新专注于用户数据深度分析。新版本引入近十项新功能,包括首个实时多人互动体验"Wrapped Party",最多可邀请9位好友比较听歌数据。此外还新增热门歌曲播放次数显示、互动歌曲测验、听歌年龄分析和听歌俱乐部等功能,让年度总结更具互动性和个性化体验。
这项研究解决了现代智能机器人面临的"行动不稳定"问题,开发出名为TACO的决策优化系统。该系统让机器人在执行任务前生成多个候选方案,然后通过伪计数估计器选择最可靠的行动,就像为机器人配备智能顾问。实验显示,真实环境中机器人成功率平均提升16%,且系统可即插即用无需重新训练,为机器人智能化发展提供了新思路。