多级流程是一种复杂的流程,其中包含具有多对多关系的实体,例如:采购到付款(P2P)和订单到现金(O2C)。传统的流程挖掘技术无法解决此类复杂业务流程中存在的典型问题——数据发散和收敛问题。
您可以利用多级流程立即发现一个实体中的活动如何给另一个实体的流程带来瓶颈和偏差,因此,有了多级流程,您就永远不必担心您为了解决了采购效率低下的问题而实施的变更会导致开票效率低下,出现得不偿失的情况。
我们继续来探讨多级流程。
端到端业务流程通常由多个流程和应用组成。请想想 SAP 中的采购到付款流程。从请购到发票的整个过程涉及四个不同但存在关联的流程:
- 请购
- 订购
- 收货
- 发票
一张发票可能与多项请购、订购和货物相关,因此,一个用例可以将多个请购、订购和收货流程实例组合到一个发票流程实例之中。
IBM Process Mining 能够通过多级流程将这四个流程中的多个实例组合到一个用例中。 从业务角度来看,这恰好能满足您的需求:您想要将与一张发票关联的所有请购或订购归入一个用例。
接下来,我们举一个简单的例子。
我们通过两份不同的请购单向一家供应商订购了四件货物。
采购部门负责处理这些请购单并创建一份订单,每行代表一件货物。
随后,仓库收到四件货物并其登记在一张收货单上,每行代表一件货物。
几天后,会计部门收到并登记发票,然后进行付款。
如果采用多级流程,这些事件均与一个用例相关联,因为它们共用一张发票。
这样我们就能得到正确的统计数据:当我们计算成本时,我们只需计算一次发票成本即可。
如果未采用多级流程,那么,每次请购都会产生一个用例,对应一张发票。显然,这种统计方法是错误的,因为我们会将发票成本计算四次。
更重要的是,多级流程可创建一个准确的模型,我们可以从中模拟某个子流程发生的变化,并衡量这些变化对其他子流程的影响。提高请购/订购的效率可能会导致发票环节出现新瓶颈,而我们可以发现这些瓶颈。如果未采用多级流程,我们就无法能进行这样的检测,因为我们只能在子流程之间建立一对一的关系。
我们来看看 IBM Process Mining 中的一个简单示例。
我们从 SAP P2P 数据集中提取并简化了与发票 3018000116_2018_IT10 对应的一个案例相关的多个事件。
您可以下载此 CSV 文件,然后将其加载到 IBM Process Mining 中。请确保映射以下 4 列:Req_ID, PO_ID, MatDoc_ID, and Invoice_ID to 'Process ID'。
您可以获得该流程模型,它能够清晰显示正确的子流程实例数量。
在流程挖掘项目设置中,我们已经说明,这些活动的成本为 20 美元(简化),然后,我们可以看到成本视图并确信有效成本准确无误,因为我们仅计算了一次发票成本。
我们可以使用分析功能计算用例的总成本、总订单金额和总发票金额。这样,我们就能获得正确的统计数据。
如果没有多级流程功能会怎样?
好,我们再来看同一个用例,假设 IBM Process Mining 不具有多级流程功能。
这样,我们就需要添加一个 caseID 列,作为每个子流程组合的唯一识别号。如上所述,我们必须将每张发票与每个请购/订购/货物组合相关联,这会导致数据重复。文件在这里。您应当创建一个新项目,仅映射 CaseID 字段。
模拟频率视图会显示这一结果,同时出现四张发票,和我们预期的错误结果一样。
通过查看成本视图得到的成本不正确,因为与发票相关的每项活动都被计算了四次。
因此,仪表板会显示错误的统计数据,因为与每张发票相关的数据都会被乘以 4。
可见,我们确实可以通过这种强大的多级流程能力正确地模拟端到端业务中涉及的多个流程。
在发现流程及变体,分析成本,绘制统计数据以及在模拟中使用数字孪生技术时均可利用多级流程能力。
>>>阅读原文
好文章,需要你的鼓励
法国人工智能公司Mistral AI宣布完成17亿欧元(约20亿美元)C轮融资,由荷兰半导体设备制造商ASML领投。此轮融资使Mistral估值从去年的60亿美元翻倍至137亿美元。英伟达、DST Global等知名投资机构参投。作为欧洲领先的AI开发商,Mistral凭借先进的多语言大模型与OpenAI等美国公司竞争,其聊天机器人Le Chat具备语音模式等功能。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
VAST Data收购了成立仅数月的初创公司Red Stapler,该公司由NetApp资深团队创立。Red Stapler创始人兼CEO Jonsi Stefansson将担任VAST云解决方案总经理,负责超大规模云战略。Red Stapler拥有6名开发人员,开发了跨SaaS交付、API集成、监控等功能的云控制平面和服务交付平台,将加速VAST AI OS在超大规模和多云环境中的部署,深化与全球领先超大规模云服务商的合作关系。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。