NEC研发出一种新的控制技术,能够在保证高度安全性的同时,将机器人在仓库的搬运作业效率提高2倍。该技术将于2023年实际应用,并计划搭载在NEC的协作搬运机器人(注)上。
NEC研发的搬运机器人控制技术概要
近年来,因人手不足和仓库大型化等原因,在搬运作业领域引入机器人的进程正在加速。然而到目前为止,虽然为实现搬运作业自动化而引入机器人,但为了确保安全性,必须控制其行驶速度,搬运效率成为课题,并不能为生产率的提高提供助力。另一方面,如提高行驶速度,为了确保安全,就需要设置搬运机器人专用通道和区域,因此很难导入到现存仓库中。
此次,NEC开发了依照安全风险来控制机器人的风险敏感概率控制技术,该技术使用了可展现机器人控制中的不确定因素(如传感器的测量误差、模拟测试的结果与机器人实际运动的差值等)的模型,以及数理金融的技巧。
依靠该技术,机器人能够自主判断行进路线及速度。在没有作业者或地面没有物品等障碍物的低风险场所,机器人将以最短距离高速行驶;而在风险较高的场所,机器人将选择可以精准避开障碍物的路线低速行驶。经对比发现,使用此技术的机器人与以往的机器人在搬运作业时,作业时间减少了一半,在确保安全性的同时可以将搬运效率提高2倍。另外,即使不设置机器人专用区域也能实现安全性和高效性,因此现有仓库也可以使用。
NEC今后将通过作业现场的实证实验进一步推进技术研发,以期早日将此技术应用于协作搬运机器人上。
(注) 2021年12月17日发布:
NEC研发出利用下一代自动搬运机器人来提高物流仓库出入库作业效率的解决方案:https://jpn.nec.com/press/202112/20211217_02.html (日语)
使用NEC协作搬运机器人的解决方案:
https://jpn.nec.com/arc/index.html (日语)
<关于用于控制搬运机器人的风险敏感概率控制技术>
好文章,需要你的鼓励
OpenAI 按用户需求在 ChatGPT 推出全新 GPT-4.1 及其 mini 与 nano 版本,专注提升编程、指令理解与长文本处理能力,免费及付费用户均可体验。
谷歌 DeepMind 推出的 AlphaEvolve AI 智能体,利用多轮反馈机制优化编程和数学任务,已在数据中心与芯片设计中提效,并重现数学问题的先进解法。
DeepMind 推出的 AI 系统 AlphaEvolve 利用自动评估机制解决数学与科学问题,在数学测试和 Google 数据中心优化中提升效率。虽非颠覆性革新,却能帮助专家腾出精力应对更重要任务。
科技公司 Stability AI 同芯片厂 Arm 合作推出“Stable Audio Open Small”,这是一款基于无版权音库训练、可在智能手机上迅速生成短音频样本的立体声音频 AI 模型,虽仅支持英文提示并存在部分局限,但对研究者和小型企业免费开放。