世界各地的科学家正准备研究詹姆斯韦伯太空望远镜拍下的第一批图像,图像内容计划在今年7月12日正式发布。
部分天文学家尝试以拍摄数据为基础运行机器学习算法,希望以前所未有的详细程度检测并分类深空星系。美国加州大学圣克鲁斯分校天体物理学教授Brant Robertson认为,詹姆斯韦伯太空望远镜拍摄的图像中一定包含突破性内容,将帮助我们深入了解宇宙如何在约137亿年前逐渐形成。
Robertson在采访中表示,“詹姆斯韦伯太空望远镜发回的数据令人兴奋,它为我们提供了前所未有的红外宇宙观测窗口,其分辨率也终于让我们梦想成真。”为了参与研究,Robertson协助开发了Morpheus机器学习模型。经过训练,该模型能够认真研究像素,并从深空背景下挑选出模糊的斑点状物体,判断这些结构是否属于星系;如果是,又属于哪种类型。
该软件将作为COSMOS-Webb项目的一部分,这也是詹姆斯韦伯太空望远镜首年运行中规模最大、最具雄心的研究计划。Robertson和一支由近50名研究人员组成的团队,将共同调查宇宙背景下的约50万个星系,从中寻找那些最古老、已经完全演变的星系,希望探索星系结构孕育出恒星后,暗物质是如何随着时间推移活动的。在Morpheus软件的支持下,整个过程将可自动执行。
利用哈勃太空望远镜2003年至2012年拍摄下的各单独照片,最终得出的合成图像。
Robertson和他的同事还不断更新Morpheus以适应詹姆斯韦伯太空望远镜发回的数据。他在采访中解释道,“我们现在已经引入了注意力机制,能够在一次分析中对更大的图像区域进行分类,从而将速度提升约100倍。新的Morpheus不仅比之前更快,而且对大型图像的分类可靠性也有提升。”
他还提到,Morpheus软件的最新版本还提供新的图像处理功能,例如通过去重合功能分离出太空中相互重叠的天体。
面对詹姆斯韦伯太空望远镜带来的比以往更宽泛、更深邃的宇宙视野,这些功能也将发挥重要作用,而且每张图像都将包含着更多肉眼无法分辨的精密结构。Morpheus初步通过NASA哈勃太空望远镜提供的7600张星系图像进行训练,Robertson认为后续还需要对模型进行重新训练,才能确保它更好地适应詹姆斯韦伯望远镜的新数据。
他表示,“我们会先试着在不重新训练的情况下,直接用原始Morpheus模型分析詹姆斯韦伯望远镜数据,再把结果跟之前对哈勃图像的分析性能进行比较。”
“由于詹姆斯韦伯望远镜数据的红外波长范围更广,而且点扩散函数(也就是通过望远镜光学系统呈现出的恒星视觉)与哈勃望远镜不同,所以我们很可能需要根据詹姆斯韦伯望远镜数据重新训练Morpheus。”
Morpheus模型将在加州大学圣克鲁斯分校的Lux超级计算机上运行。这台计算机配备80个纯CPU计算节点,每个节点包含两块20核英特尔Cascade Lake至强处理器;外加28个纯GPU节点,每个节点包含两块英伟达V100 GPU。Robertson指出,“在拿到数据之后,Lux只需要几天时间就能让Morpheus在所有詹姆斯韦伯望远镜图像上完成训练。”
作为一台全球睽违已久的超级科学设备,价值100亿美元的詹姆斯韦伯望远镜终于在去年圣诞节期间发射升空。而在今年2月正式启动拍摄之前,地面控制部门又花了几个月时间对其复杂的18镜系统进行校准。
好文章,需要你的鼓励
最新数据显示,Windows 11市场份额已达50.24%,首次超越Windows 10的46.84%。这一转变主要源于Windows 10即将于2025年10月14日结束支持,企业用户加速迁移。一年前Windows 10份额还高达66.04%,而Windows 11仅为29.75%。企业多采用分批迁移策略,部分选择付费延长支持或转向Windows 365。硬件销售受限,AI PC等高端产品销量平平,市场份额提升更多来自系统升级而非新设备采购。
清华大学团队开发出LangScene-X系统,仅需两张照片就能重建完整的3D语言场景。该系统通过TriMap视频扩散模型生成RGB图像、法线图和语义图,配合语言量化压缩器实现高效特征处理,最终构建可进行自然语言查询的三维空间。实验显示其准确率比现有方法提高10-30%,为VR/AR、机器人导航、智能搜索等应用提供了新的技术路径。
新一代液态基础模型突破传统变换器架构,能耗降低10-20倍,可直接在手机等边缘设备运行。该技术基于线虫大脑结构开发,支持离线运行,无需云服务和数据中心基础设施。在性能基准测试中已超越同等规模的Meta Llama和微软Phi模型,为企业级应用和边缘计算提供低成本、高性能解决方案,在隐私保护、安全性和低延迟方面具有显著优势。
IntelliGen AI推出IntFold可控蛋白质结构预测模型,不仅达到AlphaFold 3同等精度,更具备独特的"可控性"特征。该系统能根据需求定制预测特定蛋白质状态,在药物结合亲和力预测等关键应用中表现突出。通过模块化适配器设计,IntFold可高效适应不同任务而无需重新训练,为精准医学和药物发现开辟了新路径。