世界各地的科学家正准备研究詹姆斯韦伯太空望远镜拍下的第一批图像,图像内容计划在今年7月12日正式发布。
部分天文学家尝试以拍摄数据为基础运行机器学习算法,希望以前所未有的详细程度检测并分类深空星系。美国加州大学圣克鲁斯分校天体物理学教授Brant Robertson认为,詹姆斯韦伯太空望远镜拍摄的图像中一定包含突破性内容,将帮助我们深入了解宇宙如何在约137亿年前逐渐形成。
Robertson在采访中表示,“詹姆斯韦伯太空望远镜发回的数据令人兴奋,它为我们提供了前所未有的红外宇宙观测窗口,其分辨率也终于让我们梦想成真。”为了参与研究,Robertson协助开发了Morpheus机器学习模型。经过训练,该模型能够认真研究像素,并从深空背景下挑选出模糊的斑点状物体,判断这些结构是否属于星系;如果是,又属于哪种类型。
该软件将作为COSMOS-Webb项目的一部分,这也是詹姆斯韦伯太空望远镜首年运行中规模最大、最具雄心的研究计划。Robertson和一支由近50名研究人员组成的团队,将共同调查宇宙背景下的约50万个星系,从中寻找那些最古老、已经完全演变的星系,希望探索星系结构孕育出恒星后,暗物质是如何随着时间推移活动的。在Morpheus软件的支持下,整个过程将可自动执行。
利用哈勃太空望远镜2003年至2012年拍摄下的各单独照片,最终得出的合成图像。
Robertson和他的同事还不断更新Morpheus以适应詹姆斯韦伯太空望远镜发回的数据。他在采访中解释道,“我们现在已经引入了注意力机制,能够在一次分析中对更大的图像区域进行分类,从而将速度提升约100倍。新的Morpheus不仅比之前更快,而且对大型图像的分类可靠性也有提升。”
他还提到,Morpheus软件的最新版本还提供新的图像处理功能,例如通过去重合功能分离出太空中相互重叠的天体。
面对詹姆斯韦伯太空望远镜带来的比以往更宽泛、更深邃的宇宙视野,这些功能也将发挥重要作用,而且每张图像都将包含着更多肉眼无法分辨的精密结构。Morpheus初步通过NASA哈勃太空望远镜提供的7600张星系图像进行训练,Robertson认为后续还需要对模型进行重新训练,才能确保它更好地适应詹姆斯韦伯望远镜的新数据。
他表示,“我们会先试着在不重新训练的情况下,直接用原始Morpheus模型分析詹姆斯韦伯望远镜数据,再把结果跟之前对哈勃图像的分析性能进行比较。”
“由于詹姆斯韦伯望远镜数据的红外波长范围更广,而且点扩散函数(也就是通过望远镜光学系统呈现出的恒星视觉)与哈勃望远镜不同,所以我们很可能需要根据詹姆斯韦伯望远镜数据重新训练Morpheus。”
Morpheus模型将在加州大学圣克鲁斯分校的Lux超级计算机上运行。这台计算机配备80个纯CPU计算节点,每个节点包含两块20核英特尔Cascade Lake至强处理器;外加28个纯GPU节点,每个节点包含两块英伟达V100 GPU。Robertson指出,“在拿到数据之后,Lux只需要几天时间就能让Morpheus在所有詹姆斯韦伯望远镜图像上完成训练。”
作为一台全球睽违已久的超级科学设备,价值100亿美元的詹姆斯韦伯望远镜终于在去年圣诞节期间发射升空。而在今年2月正式启动拍摄之前,地面控制部门又花了几个月时间对其复杂的18镜系统进行校准。
好文章,需要你的鼓励
当前企业面临引入AI的机遇与挑战。管理层需要了解机器学习算法基础,包括线性回归、神经网络等核心技术。专家建议从小规模试点开始,优先选择高影响用例,投资数据治理,提升员工技能。对于影子IT现象,应将其视为机会而非问题,建立治理流程将有效工具正式化。成功的AI采用需要明确目标、跨部门协作、变革管理和持续学习社区建设。
这项由东京科学技术大学等机构联合发布的研究提出了UMoE架构,通过重新设计注意力机制,实现了注意力层和前馈网络层的专家参数共享。该方法在多个数据集上显著优于现有的MoE方法,同时保持了较低的计算开销,为大语言模型的高效扩展提供了新思路。
美国垃圾收集行业2024年创收690亿美元,近18万辆垃圾车每周运营六至七天,每日停靠超千次。设备故障成为行业最大隐性成本,每辆车年均故障费用超5000美元。AI技术通过实时监控传感器数据,能提前数周预测故障,优化零部件库存管理,减少重复维修。车队报告显示,预测性维护每辆车年节省高达2500美元,显著提升运营效率和服务可靠性。
小米团队开发的MiMo-7B模型证明了AI领域"小而精"路线的可行性。这个仅有70亿参数的模型通过创新的预训练数据处理、三阶段训练策略和强化学习优化,在数学推理和编程任务上超越了320亿参数的大模型,甚至在某些指标上击败OpenAI o1-mini。研究团队还开发了高效的训练基础设施,将训练速度提升2.29倍。该成果已完全开源,为AI民主化发展提供了新思路。