近日,阿里云机器学习平台PAI主导的论文《Parameter-Efficient Sparsity for Large Language Models Fine-Tuning》,大模型参数高效稀疏训练算法PST被IJCAI(International Joint Conference on Artificial Intelligence)2022录取。论文通过减少模型稀疏训练过程中需要更新的参数量,从而减少大模型稀疏训练的时间以及资源开销。
IJCAI(International Joint Conference on Artificial Intelligence)是人工智能领域的顶级国际会议之一,涉及机器学习,计算机视觉,自然语言处理等多个方向。本年度会议投稿超过4500篇,录用率仅为15%,会议于7月在奥地利维也纳召开。此次入选意味着阿里云机器学习平台PAI在大模型优化方向上的研究达到了全球业界先进水平,获得了国际学者的认可,展现了中国深度学习技术在国际上的竞争力。
首个大模型参数高效的稀疏训练算法PST
论文核心内容是通过减少模型稀疏训练过程中需要更新的参数量,从而减少大模型稀疏训练的时间以及资源开销。近几年,越来越多的大模型被提出,这些模型的参数量从百亿到千亿甚至万亿,虽然它们可以达到很高的模型精度,但是过大的模型体积限制了这些大模型的实际落地应用。稀疏作为一个有效的模型压缩手段,可以将大模型压缩到较小的体积,使得它们能够以较少的资源较快的速度运行起来。然而,稀疏训练本身会引入额外的参数,从而使得大模型的稀疏训练需要占用更多的训练资源以及导致训练速度更慢。
针对这一问题,PST提出了一种参数高效的稀疏训练算法,通过分析权重的重要性指标,得出了其拥有两个特性:低秩性和结构性。根据这一结论,PST算法引入了两组小矩阵来计算权重的重要性,相比于原本需要与权重一样大的矩阵来保存和更新重要性指标,稀疏训练需要更新的参数量大大减少。对比常用的稀疏训练算法,PST算法可以在仅更新1.5%的参数的情况下,达到相近的稀疏模型精度。
PST技术已经集成在阿里云机器学习PAI的模型压缩库,以及Alicemind平台大模型稀疏训练功能中。为阿里巴巴集团内部落地使用大模型带来了性能加速,在百亿大模型PLUG上,PST相比于原本的稀疏训练可以在模型精度不下降的情况下,加速2.5倍,内存占用减少10倍。目前,阿里云机器学习PAI已经被广泛应用于各行各业,提供AI开发全链路服务,实现企业自主可控的AI方案,全面提升机器学习工程效率。
论文名字:
Parameter-Efficient Sparsity for Large Language Models Fine-Tuning
论文作者:
李与超、罗福莉、谭传奇、王梦娣、黄松芳、李深、白俊杰
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。