根据微软研究院和卡内基梅隆大学研究人员的一项研究表明,一些知识工作者可能正在过度依赖生成式 AI,这可能导致他们的问题解决能力下降。
在题为《生成式 AI 对批判性思维的影响》的论文中,七位研究人员对 319 名每周至少使用一次生成式 AI 的知识工作者进行了调查和分析,研究他们在使用 Copilot 和 ChatGPT 等工具时是否运用批判性思维。
研究发现,对任务有信心的员工更可能对生成式 AI 的输出结果进行批判性思考,而对任务不太有把握的员工往往会认为生成式 AI 产生的答案已经足够,不会去思考 AI 提供的内容。
研究人员建议需要重新思考企业 AI 工具的设计。
论文指出:"对 AI 的信任与降低批判性思维努力相关,而自信则与增加批判性思维相关。这种二元性表明设计策略应该注重平衡这些方面。"
研究团队建议,AI 工具应该包含支持长期技能发展的机制,并鼓励用户在与 AI 生成的输出交互时进行反思性思考。
研究人员表示:"这与可解释 AI 的目标相一致",他们指的是让 AI 说明其如何得出输出结果的做法。这对 DeepSeek 和 OpenAI 最新的思维链 AI 模型来说是个好消息,但仅仅解释 AI 的推理过程是不够的。
研究人员写道,好的 AI 工具应该通过主动设计策略来培养批判性思维,鼓励用户反思并在必要时提供帮助。
论文得出结论,我们应该适应 AI 融入的世界,通过运用批判性思维来验证 AI 输出及其在日常工作中的应用。考虑到七位作者中有六位来自销售 Copilot 的公司,这个结论可能在意料之中。
研究人员承认,知识工作者应该被教导"保持信息收集和问题解决的基础技能,避免过度依赖 AI",但不要过度。那些使用 ChatGPT、Copilot 和其他生成式 AI 工具的人应该接受"信息验证、响应整合和任务管理技能"的培训。
论文将在 2025 年 4 月底举行的人机交互系统会议上展示。
好文章,需要你的鼓励
CPU架构讨论常聚焦于不同指令集的竞争,但实际上在单一系统中使用多种CPU架构已成常态。x86、Arm和RISC-V各有优劣,AI技术的兴起更推动了对性能功耗比的极致需求。当前x86仍主导PC和服务器市场,Arm凭借庞大生态系统在移动和嵌入式领域领先,RISC-V作为开源架构展现巨大潜力。未来芯片设计将更多采用异构计算,多种架构协同工作成为趋势。
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
Vast Data与云计算公司CoreWeave签署了价值11.7亿美元的多年期软件许可协议,这标志着AI基础设施存储市场的重要转折点。该协议涵盖Vast Data的通用存储层及高级数据平台服务,将帮助CoreWeave提供更全面的AI服务。业内专家认为,随着AI集群规模不断扩大,存储系统在AI基础设施中的占比可能从目前的1.9%提升至3-5%,未来五年全球AI存储市场规模将达到900亿至2000亿美元。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。