根据微软研究院和卡内基梅隆大学研究人员的一项研究表明,一些知识工作者可能正在过度依赖生成式 AI,这可能导致他们的问题解决能力下降。
在题为《生成式 AI 对批判性思维的影响》的论文中,七位研究人员对 319 名每周至少使用一次生成式 AI 的知识工作者进行了调查和分析,研究他们在使用 Copilot 和 ChatGPT 等工具时是否运用批判性思维。
研究发现,对任务有信心的员工更可能对生成式 AI 的输出结果进行批判性思考,而对任务不太有把握的员工往往会认为生成式 AI 产生的答案已经足够,不会去思考 AI 提供的内容。
研究人员建议需要重新思考企业 AI 工具的设计。
论文指出:"对 AI 的信任与降低批判性思维努力相关,而自信则与增加批判性思维相关。这种二元性表明设计策略应该注重平衡这些方面。"
研究团队建议,AI 工具应该包含支持长期技能发展的机制,并鼓励用户在与 AI 生成的输出交互时进行反思性思考。
研究人员表示:"这与可解释 AI 的目标相一致",他们指的是让 AI 说明其如何得出输出结果的做法。这对 DeepSeek 和 OpenAI 最新的思维链 AI 模型来说是个好消息,但仅仅解释 AI 的推理过程是不够的。
研究人员写道,好的 AI 工具应该通过主动设计策略来培养批判性思维,鼓励用户反思并在必要时提供帮助。
论文得出结论,我们应该适应 AI 融入的世界,通过运用批判性思维来验证 AI 输出及其在日常工作中的应用。考虑到七位作者中有六位来自销售 Copilot 的公司,这个结论可能在意料之中。
研究人员承认,知识工作者应该被教导"保持信息收集和问题解决的基础技能,避免过度依赖 AI",但不要过度。那些使用 ChatGPT、Copilot 和其他生成式 AI 工具的人应该接受"信息验证、响应整合和任务管理技能"的培训。
论文将在 2025 年 4 月底举行的人机交互系统会议上展示。
好文章,需要你的鼓励
本文探讨如何使用生成式AI和大语言模型作为倾听者,帮助用户表达内心想法。许多主流AI如ChatGPT、Claude等被设计成用户的"最佳伙伴",或试图提供心理健康建议,但有时用户只想要一个尊重的倾听者。文章提供了有效的提示词技巧,指导AI保持中性、尊重的态度,专注于倾听和理解,而非给出建议或判断。同时提醒用户注意隐私保护和AI的局限性。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
人工通用智能和超级人工智能的出现,可能会创造出一种全新的外星智能形态。传统AI基于人类智能模式构建,但AGI和ASI一旦存在,可能会选择创造完全不同于人类认知方式的新型智能。这种外星人工智能既可能带来突破性进展,如找到癌症治愈方法,也可能存在未知风险。目前尚不确定这种新智能形态是否会超越人类智能,以及我们是否应该追求这一可能改变人类命运的技术突破。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。