现如今,大多数自动驾驶汽车都依靠传感器融合,即将毫米波雷达、激光雷达和摄像头的多传感器数据以一定的准则进行分析和综合来收集环境信息。正如自动驾驶汽车行业巨头们所证明的那样,多传感器融合提高了自动驾驶汽车系统的性能,让车辆出行更安全。
但并非所有的传感器融合都会产生相同的效果。虽然许多自动驾驶汽车制造商依靠 "目标级"的传感器融合,但只有集中式传感器前融合才能为自动驾驶系统提供最佳驾驶决策所需的信息。接下来我们将进一步解释目标级融合和集中式传感器前融合之间的区别,以及解释证明集中式前融合不可或缺的原因。
集中式传感器前融合保留了原始传感器数据可做出更精确的决策
自动驾驶系统通常依靠一套专门的传感器来收集关于其环境的底层原始数据。每种类型的传感器都有优势和劣势,如图所示:
优势 |
劣势 |
|
毫米波雷达 |
可在不佳的天气条件下检测远距离的物体 性价比高 |
空间角分辨率差 不能辨别小物体 |
摄像头 |
可使用高清晰度图像和文本数据对物体进行分类检测 性价比高 |
能见度较低的环境下性能差 距离和速度测量性能不佳 |
激光雷达 |
可精确地检测物体的边缘 可生成高清晰的三维图像 |
能见度较低的环境下性能差 维护成本高 价格高 |
融合了毫米波雷达、激光雷达和摄像头多传感器后可最大限度地提升所收集数据的质量和数量,从而生成完整的环境图像。
多传感器融合,相对于传感器单独处理的优势已经被自动驾驶汽车制造商普遍接受,但这种融合的方式通常发生在 “目标级”的后处理阶段。在这种模式下,物体数据的收集、处理、融合和分类都发生在传感器层面。然而,数据综合处理前,单个传感器通过对信息的预先分别过滤,使得对自动驾驶决策所需的背景信息也几乎都被剔除了,这使得目标级融合很难满足未来的自动驾驶算法的需要。
集中式传感器前融合则很好地规避了此类风险。毫米波雷达、激光雷达和摄像头传感器将底层原始数据发送到车辆中央域控制器进行处理。这种方法最大限度地提高了自动驾驶系统获取的信息量,使得算法能够获取全部的有价值的信息,从而能够实现比目标级融合提供更好的决策。
AI增强型毫米波雷达通过集中化处理大幅提升自动驾驶系统的性能
如今,自动驾驶系统已经集中式处理摄像头数据。但当涉及到毫米波雷达数据时,集中化处理仍然是不现实的。高性能的毫米波雷达通常需要数百个天线通道,这就大幅增加了产生的数据量。因此,本地处理就成了一个更具性价比的选择。
然而,安霸的 AI 增强的毫米波雷达感知算法在不需要额外物理天线的情况下,可以提高雷达角分辨率和性能。来自较少信道的原始雷达数据可以通过使用标准汽车以太网等接口,以较低的成本传送到中央处理器。当自动驾驶系统将原始的 AI 增强雷达数据与原始摄像头数据相融合时,它们就能充分利用这两种互补的传感方式来建立一个完整的环境图像,使融合后的结果更加全面,超越任何单一传感器所获得的信息。
毫米波雷达的更新迭代有助于降低成本,也大幅地提高自动驾驶系统的性能。传统的低成本雷达量产时,每个毫米波雷达的价格可以低于 50 美元,比激光雷达的目标成本低一个数量级。与无处不在的低成本摄像头传感器相结合,AI 雷达提供了可接受的精确度,这对大规模商业化的自动驾驶汽车量产至关重要。而激光雷达传感器与运行 AI 算法的摄像头/毫米波雷达感知融合系统相重叠,如果激光雷达的成本逐渐下降,将可作为摄像头 + 毫米波雷达在 L4/L5 自动驾驶系统中的安全冗余。
算法优先的中央处理架构深化传感器融合以优化自动驾驶系统性能
现行的目标级传感器融合有一定局限性。这是因为前端传感器都带有本地处理器,从而限制了每个智能传感器的尺寸、功耗和资源分布,从而进一步限制了整个自动驾驶系统的性能。此外,大量数据处理会快速耗尽车辆的动力并缩短其行驶里程。
相反,算法优先的中央处理架构实现了我们称之为深度、集中式的传感器前融合。该技术利用最先进的半导体工艺节点优化了自动驾驶系统的性能,这主要是因为该技术在所有传感器上动态分布的处理能力,以及能根据驾驶场景提升不同传感器和数据动向的性能。通过获取高质量、底层原始数据,中央处理器可以做出更智能、更准确的驾驶决策。
自动驾驶汽车制造商可以使用低功耗毫米波雷达和摄像头传感器,并结合尖端的算法优先的特定应用处理器,如安霸最近宣布的 5 纳米制程 CV3 AI 大算力域控制芯片,具备最佳感知和路径规划性能、具有最高的能效比,显著增加每辆自动驾驶汽车行驶里程的同时,降低电池消耗。
不要抛弃传感器——投资于它们的融合
自动驾驶系统需要多样化的数据才能做出正确的驾驶决策,只有深度、集中式的传感器融合才能提供最佳自动驾驶系统的性能和安全所需的广泛数据。在我们的理想模型中…
集中式传感器前融合可以改进现有的高层级融合架构,让使用传感器融合的自动驾驶汽车强大而可靠。为了获得这些好处,自动驾驶汽车制造商必须投资算法优先的中央处理器,以及支持 AI 的毫米波雷达和摄像头传感器。通过多方努力,AI 制造商可以迎来下一阶段的自动驾驶汽车发展的技术变革。
好文章,需要你的鼓励
树莓派基金会调查发现,尽管60%的家长认为编程是孩子的重要技能,但超过70%的家长表示孩子在正常课程中没有学习编程。该基金会CEO指出,随着AI技术快速发展,年轻人掌握技术理解和创造能力比以往更重要。超半数家长认为编程应成为必修课程,并相信学习编程能提升孩子未来职业前景。为填补学校教育空白,基金会呼吁在学校和图书馆广泛设立编程俱乐部,目标到2035年全球教授1000万儿童编程技能。
Patronus AI发布突破性研究,构建了首个系统性AI代理错误评估体系TRAIL,涵盖148个真实案例和21种错误类型。研究发现即使最先进的AI模型在复杂任务错误识别上准确率仅11%,揭示了当前AI代理系统在长文本处理、推理能力和自我监控方面的重大局限,为构建更可靠的AI系统指明方向。
文章介绍了AI大语言模型中最新的深度研究功能,这是目前最令人印象深刻的新功能之一。作者详细解析了ChatGPT、Claude和Gemini等主流模型的使用方法,并重点展示了深度研究功能的实际应用。通过实际测试,作者用ChatGPT 4.5的深度研究功能生成了一份关于1990-2025年最令人厌烦歌曲的详细报告,展示了AI如何通过思维链进行深度研究和分析。文章还提到了语音交互模式将进一步改变用户与AI的交互体验。
这项研究首次从理论和实践证明AI模型可通过模仿生物睡眠-学习周期显著提升性能。研究发现AI训练中存在自发的"记忆-压缩循环",并据此开发了GAPT算法,在大语言模型预训练中实现4.8%性能提升和70%表示效率改善,在算术泛化任务中提升35%,为AI发展指出了注重信息整理而非单纯数据扩展的新方向。