这样大规模的投资,除了因为生成式AI已经成为全球科技发展的下一项关键技术,更重要的是,生成式AI烧钱速度已经不亚于半导体产业。
据此前国盛证券预测数据显示,GPT-3训练一次的成本约为140万美元,对于一些更大的LLM模型,训练成本介于200万美元至1200万美元之间。
面对如此烧钱的生成式AI,如何让这样的产品和项目适配市场,就成了推动这项技术早日完成商业闭环,推动市场成熟的关键。
11月16日(本周六),在即将召开的2024 AI创新者大会暨PEC·提示工程峰会上,我们邀请到了中关村智用人工智能研究院首席产业研究员、清研载物人工智能基金主管合伙人钱雨、北京凯利时科技有限公司董事长、CEO刘建宏、小水智能CEO孙雪峰、北电数智智算云负责人郭文、清控科创科招中心总监李雅几位AI领域投资人、创业者和产研专家。
由至顶科技战略生态总监孙封蕾与这几位专家进行一场深度对谈,一起聊一聊——创业还是创收,如何帮AI产品适配市场?
好文章,需要你的鼓励
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。